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BACKGROUND Glycoprotein VI (GPVI) is the essential platelet collagen receptor in atherothrombosis, but its inhibition

causes only a mild bleeding tendency. Thus, targeting this receptor has selective antithrombotic potential.

OBJECTIVES This study sought to compare compounds interfering with platelet GPVI–atherosclerotic plaque inter-

action to improve current antiatherothrombotic therapy.

METHODS Human atherosclerotic plaque–induced platelet aggregation was measured in anticoagulated blood under

static and arterial flow conditions (550/s, 1,100/s, and 1,500/s). Inhibition by dimeric GPVI fragment crystallizable region

of IgG (Fc) masking GPVI binding sites on collagen was compared with that of 3 anti-GPVI antibodies: BLO8-1, a human

domain antibody; 5C4, a fragment antigen-binding (Fab fragment) of monoclonal rat immunoglobulin G; and m-Fab-F,

a human recombinant sFab against GPVI dimers.

RESULTS GPVI-Fc reduced plaque-triggered platelet aggregation in static blood by 51%, BLO8-1 by 88%, and 5C4 by

93%. Under arterial flow conditions, BLO8-1 and 5C4 almost completely inhibited platelet aggregation while preserving

platelet adhesion on plaque. Inhibition by GPVI-Fc, even at high concentrations, was less marked but increased with shear

rate. Advanced optical imaging revealed rapid persistent GPVI-Fc binding to collagen under low and high shear flow,

upstream and downstream of plaque fragments. At low shear particularly, platelets adhered in plaque flow niches to

GPVI-Fc–free segments of collagen fibers and recruited other platelets onto aggregates via ADP and TxA2 release.

CONCLUSIONS Anti-GPVI antibodies inhibit atherosclerotic plaque-induced platelet aggregation under static and flow

conditions more effectively than GPVI-Fc. However, potent platelet inhibition by GPVI-Fc at a higher shear rate (1,500/s)

suggests localized antithrombotic efficacy at denuded or fissured stenotic high-risk lesions without systemic bleeding.

The compound-specific differences have relevance for clinical trials targeting GPVI-collagen interaction combined with

established antiplatelet therapies in patients with spontaneous plaque rupture or intervention-associated plaque injury.

(J Am Coll Cardiol 2015;65:2404–15) © 2015 by the American College of Cardiology Foundation.
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AB BR E V I A T I O N S

AND ACRONYM S

ADP = adenosine diphosphate

Fc = fragment crystallizable

region of IgG

GPO = glycine-proline-

hydroxyproline

GPVI = glycoprotein VI

Ig = immunoglobulin

KD = dissociation constant

TxA2 = thromboxane A2

vWF = von Willebrand factor
T he most common cause of acute myocardial
infarction and ischemic stroke is arterial
thrombosis at sites of erosion or rupture of

atherosclerotic plaques that expose thrombogenic
plaque material to circulating blood (1,2). We recently
described a 2-step mechanism of arterial thrombus
formation induced by human atherosclerotic plaques
with rapid glycoprotein VI (GPVI)–mediated platelet
adhesion and aggregation onto plaque collagen, fol-
lowed by plaque tissue factor–mediated fibrin forma-
tion (3). Indeed, morphologically altered collagen
type I and III structures present in atherosclerotic
plaques (3–6) are highly thrombogenic and induce
platelet aggregation under static and flow conditions
through binding to GPVI (3,5,7). In contrast to flow
studies with isolated collagen fibers (8,9), the
collagen receptor a2b1 integrin is not involved in
plaque-induced platelet aggregation (5,6). Therefore,
targeting GPVI might preferentially inhibit athero-
sclerotic plaque-induced thrombosis.
SEE PAGE 2416
GPVI, a 60 to 65 kDa type I transmembrane glyco-
protein member of the immunoglobulin (Ig) super-
family, is a main platelet collagen receptor (10–13). Its
expression is restricted to platelets and megakaryo-
cytes; thus, direct targeting of this receptor does not
affect other cell types (14). The monomeric form of
GPVI predominates on resting platelets, but when
platelets are stimulated by von Willebrand factor
(vWF), collagen-related peptide, or thrombin, dimeric
GPVI expression increases on the platelet surface
(15,16). Only the dimeric form of GPVI shows high
affinity binding to collagen (17,18), recognizing tan-
dem glycine-proline-hydroxyproline (GPO) motifs in
collagen fibers (9,19). GPVI binds to collagen via its
tandem Ig domains D1 and D2, which are held out
from the platelet surface by an O-glycosylated mucin-
like stalk (20).

GPVI deficiency causes only a limited bleeding
tendency, reinforcing its potential as a selective
and relatively safe drug target (10,14,21). The GPVI-
collagen interaction can be inhibited either by
occupation of GPO-binding sites on collagen using
extracellular GPVI fused to the Fc region of
human IgG (GPVI-Fc, Revacept, advanceCOR, Munich,
(stipend) from advanceCOR GmbH; Drs. Münch and Ungerer are managing d
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Germany) or by antibodies directed against
platelet GPVI. In phase I studies, GPVI-Fc was
well tolerated without affecting systemic
hemostasis in healthy human volunteers. It
inhibited collagen-induced platelet aggrega-
tion ex vivo in a dose-dependent manner (22).
A human recombinant Fab (m-Fab-F) specif-
ically blocks GPVI dimers (18). BLO8-1, a
human anti-GPVI domain antibody consisting
of a single Ig variable domain recognizes res-
idue K59 in domain D1 on the apical surface of
GPVI (23). 5C4, the Fab fragment of a mono-
clonal GPVI-blocking rat IgG, targets epitopes

of GPVI at D1 and the intersection to domain D2 (24).

The aim of this study was to explore the platelet-
inhibiting potential of GPVI-Fc and anti-GPVI anti-
bodies under both static and arterial flow conditions.
Blood was stimulated with human atherosclerotic
plaque material to mimic pathophysiological condi-
tions of plaque rupture.

METHODS

Atherosclerotic plaques were obtained from patients
undergoing endarterectomy for high-grade carotid
artery stenosis. Patient informed consent was ob-
tained, as approved by the Ethics Committee of the
Faculty of Medicine of the University of Munich in
accordance with the ethical principles for medical
research involving human subjects as set out in the
Declaration of Helsinki.

The carotid plaque tissue was endarterectomized,
processed, and preserved as described (3,25). Plaque
homogenates from 5 patients were mixed to obtain
plaque pools that were kept in aliquots at �80�C.
Plaque homogenates were used for platelet aggrega-
tion studies or coated onto glass coverslips for flow
studies (3,26,27).

We stimulated blood with plaque homogenates
containing all potential thrombogenic compounds or
Horm collagen. Plaque contains mainly type I and III
collagens (5,6). Horm collagen consists of collagen type
I, as suggested by the supplier, but also collagen type III
(W. Siess, unpublished observations, October, 2013).
In addition to experiments with blood pre-incubated
with GPVI-Fc and subsequent plaque stimulation, we
performed experiments with plaque pre-incubated
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with 35-fold or 50-fold higher concentrations of
GPVI-Fc than finally present in blood to maximally
saturate the collagen-binding sites for GPVI.

For additional details, see the Online Appendix.

RESULTS

Aggregation measurements showed that GPVI-Fc, but
not Fc lacking the external GPVI domain, delayed
plaque- and collagen-stimulated platelet aggregation
in blood (Figure 1A). In plaque-stimulated samples,
the lag time until the start of aggregation increased
from 65 � 19 s with Fc control protein to 119 � 23 s
(n ¼ 6; p < 0.001) with GPVI-Fc (50 mg/ml, 300 nM),
when the proteins were pre-incubated with blood and
from 72 � 20 s with Fc control protein to 134 � 25 s
(n ¼ 6; p < 0.001) with GPVI-Fc, when the proteins
were mixed with plaque before blood stimulation.
Inhibition was specific because GPVI-Fc did not affect
platelet aggregation when stimulated with adenosine
diphosphate (ADP) and thrombin receptor-activating
peptide (Figure 1B). Collagen-stimulated platelet ag-
gregation was dose dependently reduced (maximally
FIGURE 1 Static Platelet Aggregation Attenuated by GPVI-Fc

200
53 AU*min 745 AU*min 489 AU*min

Control
Fc+blood
+Plaque

GPVI-Fc+blood
+Plaque

Ag
gr

eg
at

io
n,

AU

Collagen

A

C D

GPVI-Fc (µµg/ml)

Ag
gr

eg
at

io
n

(%
 o

f C
on

tr
ol

)

10min

100

50

12.5 25 50
0

0

GPV

100

50

12.5
0

*

(A) Representative multiple electrode aggregometry tracings show plaq

equimolar concentrations of Fc (16 mg/ml), and GPVI-Fc (50 mg/ml) (tracin

concentrations of Fc (560 mg/ml) or GPVI-Fc (1,750 mg/ml) for 3 min were

5). Numbers show cumulative aggregation (AU*min) measured from 0 to

by ADP (5 mM) or TRAP (15 mM) (mean � SD, n ¼ 4). Blood was pre-incu

before stimulation with collagen (0.5 mg/ml) (C) or with plaque (833 mg

concentrations of GPVI-Fc (109, 219, 437, 875, and 1,750 mg/ml) or Fc for

as in D. *p < 0.05; ***p < 0.001 for GPVI-Fc versus control by 2-tailed
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by �45%) (Figure 1C) as was plaque-induced platelet
aggregation by blood pre-treatment with GPVI-Fc
(maximally by �51%) (Figure 1D). Surprisingly, inhi-
bition was not significantly enhanced if plaque
was pre-incubated with a 35-fold higher GPVI-Fc
concentration before stimulation of the blood sam-
ples (Figure 1E), even if pre-incubation time was
extended to 30 min (Online Figure 1).

The anti–GPVI antibodies BLO8-1 (10 mg/ml, 833 nM)
and 5C4 (1.25 mg/ml, 25 nM) almost completely
inhibited plaque- and collagen-induced platelet
aggregation in a concentration-dependent manner
(Online Figures 2A and 2B, and not shown). The high-
est concentration of BLO8-1 decreased aggregation to
12% of control (n ¼ 9) after plaque stimulation and to
16% (n ¼ 8) after collagen stimulation. Residual ag-
gregation after pre-incubation with the highest 5C4
concentration was 7% on plaque stimulation (n ¼ 5)
and 18% on collagen stimulation (n¼ 5). Inhibition was
specific because neither BLO8-1 nor 5C4 affected
platelet aggregation when stimulated by ADP and
thrombin receptor–activating peptide (Online
Figure 2C).
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Because dimeric GPVI on resting platelets is
essential for collagen binding and platelet activa-
tion (16), we performed experiments with m-Fab-F
directed against dimeric GPVI (16,18) and compared
it with 5C4, which blocks monomeric and dimeric
GPVI. The m-Fab-F inhibited plaque-induced platelet
aggregation less effectively than 5C4 (�64 �
11% vs. �86 � 8%; p < 0.05). Inhibition of plaque-
induced platelet aggregation by dimeric GPVI-Fc
was �53 � 17% (Online Figure 3). 5C4 inhibits
platelet aggregation with a half maximal inhibitory
concentration (IC50) of w0.2 mg/ml, corresponding to
a dissociation constant (KD) of w1 nM, whereas
m-Fab-F has a reported KD for GPVI dimer of w10
nM. However, although m-Fab-F binding to GPVI
dimer is saturable, lower maximal available binding
sites (Bmax) were reached using m-Fab-F than using
other antibodies (16), indicating that m-Fab-F does
not bind to all GPVI dimers present on the platelet
surface.

To simulate plaque rupture and subsequent
platelet activation, human whole blood was per-
fused in a parallel plate flow chamber over human
plaque homogenate at different arterial shear rates:
550/s and 1,100/s are within the range of physio-
logical mean and peak wall shear rates of carotid
and coronary arteries (28,29), and shear rates of
w1,500/s prevail over mildly stenotic coronary
lesions.

The fluorescence micrographs in Figures 2A and 2B
and diagrams in Figure 2C (quantifying the area
covered with platelets over time) show inhibition of
plaque-induced platelet deposition by GPVI-Fc,
BLO8-1, and 5C4 at different arterial shear rates.
Platelet coverage tested at full minutes for all treat-
ments and shear rates of 550/s and 1,100/s and for
GPVI-Fc versus control for shear rates of 550/s,
1,100/s, and 1,500/s by 3-way analysis of variance
was significant for factors treatment (p < 0.001),
shear (p < 0.05), time (p < 0.001), and the interac-
tion of treatment with shear (p < 0.05) and time (p <

0.001). GPVI-Fc (50 mg/ml) significantly delayed and
reduced plaque-induced platelet aggregation
compared with controls (Figures 2A and 2C, Online
Videos 1 and 2). Because the limited inhibition at
the shear rate of 550/s might be explained by sub-
saturating blood concentrations of GPVI-Fc not
blocking all tandem GPO motifs in plaque collagen,
we pre-incubated plaque-coated coverslips with 50-
fold higher GPVI-Fc concentrations (than reached
after GPVI-Fc addition to blood) before low shear
rate flow blood perfusion. As in the static experi-
ments (Figure 1, Online Figure 1), inhibition by GPVI-
Fc was not increased (Online Figure 4).
Interestingly, inhibition by GPVI-Fc increased with
shear rate. At 1,500/s, GPVI-Fc effectively inhibited
plaque-induced platelet aggregation (Figure 2C, bottom).

The anti-GPVI antibodies BLO8-1 (20 mg/ml) and
5C4 (1.25 mg/ml) almost completely inhibited platelet
aggregate formation at shear rates of 550/s and 1,100/s.
Only platelet adhesion was observed, which was
predominantly transient (Figure 2, Online Video 3).
ADVANCED OPTICAL IMAGING. To study the mech-
anism of the GPVI-Fc–mediated inhibition of platelet
aggregate formation on plaque, we visualized the
binding of fluorescent GPVI-Fc to plaque in relation to
platelet adhesion and aggregate formation in flowing
blood. GPVI-Fc rapidly bound to plaque, reaching
saturation 250 s after start of flow (Figure 3A). GPVI-Fc
bound faster to plaque than platelets, but the kinetics
and amount of GPVI-Fc binding were similar at low
(550/s) and high (1,500/s) shear rates. This excludes a
difference in GPVI-Fc binding as an explanation for
the GPVI-Fc superior inhibition of platelet deposition
at a high shear rate.

WevisualizedGPVI-Fc binding andplatelet attachment
to plaque by high magnification bright-field
and fluorescence video microscopy during the first mi-
nutes of flow (Figure 3B). Phycoerythrin-labeled GPVI-Fc
added to blood rapidly bound as discrete dots to small
plaque particles as well as to large plaque fragments up-
anddownstream,mainly in an irreversiblemanner (Figure
3B, Online Videos 4 and 5). GPVI-Fc binding to the small,
more homogenized plaque components was more rapid
than binding to the whole plaque homogenate containing
the large plaque fragments (Figure 3A, Online Figure 5).
The dots representing GPVI-Fc labeled with
phycoerythrin-conjugated anti–human Fc antibody
differed in size and intensitymost likely reflecting the size
of the fluorescent GPVI-Fc/antibody complexes. Fluores-
centGPVI-Fcbinding toplaquewas specific. Itdidnotbind
to albumin-blocked glass surface, and fluorescence-
labeled Fc protein added to blood did not bind to plaque.

Compared with GPVI-Fc binding, platelet adhesion
to plaque was infrequent and mostly transient, and
platelet aggregate formation onto plaque was much
slower (Figure 3A, Online Video 5). Fluorescent
GPVI-Fc prevented platelet attachment to plaque. As
shown in Figure 3B, row 1, a single platelet was rolling
over fluorescent GPVI-Fc bound to a plaque fragment.
However, some platelets were able to irreversibly
adhere to sites downstream of protuberant plaque
fragments (Figure 3B, row 3, Online Video 5); this was
more pronounced at low versus high shear rates. Such
platelets then served as a starting point for platelet
aggregate formation (Figure 3B, row 3).

Two-photon laser scanning microscopy showed
3-dimensional (3D) platelet aggregate formation up- and
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FIGURE 2 Inhibition of Atherosclerotic Plaque-Induced Platelet Deposition by GPVI-Fc and Anti-GPVI Antibodies
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Representative micrographs display platelet coverage of plaque at different times after start of blood flow at 550/s (A) (Online Videos 1 and 2) or 1,100/s (B). Blood was

pre-incubated with mepacrine for platelet visualization (without ¼ control) or with GPVI-Fc (50 mg/ml) or anti-GPVI antibodies 5C4 (1.25 mg/ml) or BLO8-1 (20 mg/ml).

Enlarged insets ¼ high magnification images. (C) Effect of GPVI-Fc, BLO8-1, or 5C4 on the time course of platelet deposition onto plaque from flowing blood at 3

different arterial shear rates (Online Videos 1 and 2). BLO8-1 and 5C4 curves are shown at blown-up scale (right). Mean � SD of 5 to 12 experiments. Secondary pair

comparisons between treatments were significant for control versus Blo8-1 (**p < 0.01), 5C4 (**), and GPVI-Fc (*p < 0.05). Abbreviations as in Figure 1.
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FIGURE 2 Continued
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downstream of plaque material at low and high shear in
untreated blood. At low and high shear, AlexaFluor594-
labeled GPVI-Fc added to blood rapidly bound to auto-
fluorescent small and large plaque fragments before
platelet adhesion. At low shear, platelet adhesion and
subsequent aggregate formation in the presence of GPVI-
Fc was only observed downstream of plaque material
(Online Figure 6A, Online Video 6), that was confirmed by

http://jaccjacc.acc.org/video/2015/4229_VID6.avi


FIGURE 3 Dynamics of GPVI-Fc Binding, Platelet Adhesion, and Aggregate Formation Onto Atherosclerotic Plaque Material Under Flow
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(A) GPVI-Fc (50 mg/ml final concentration) labeled with phycoerythrin (PE)–conjugated anti-human Fc antibody (red) and added to blood before perfusion rapidly bound

to plaque homogenate. Binding was similar at low and high shear rates (550/s and 1,500/s). Deposition of platelets (green; labeled with DiOC6) lagged behind at low

shear and was inhibited at high shear. (B) GPVI-Fc-PE (red) binds up- and downstream of plaque fragments (gray) and to small plaque pieces not detectable by

differential interference contrast (DIC) (Online Videos 4, 5, and 7). Platelet adhesion and aggregate formation (gray) is observed only downstream. Phase contrast (DIC)

images of platelet (gray) and GPVI-Fc-PE binding (red) to plaque at different times after start of blood perfusion at low shear rate (550/s). Rows 1 and 2: A single

platelet (upper arrow) rolls over PE-labeled GPVI-Fc (lower arrow) bound to a piece of plaque material. Rows 3 and 4: Platelet aggregate formation starting from a

single adhering platelet (arrow) in a flow niche downstream of plaque. Rows 1 and 3: Overlay of DIC (plaque/platelets) and fluorescence (PE-labeled GPVI-Fc) images;

rows 2 and 4: fluorescence images of PE-labeled GPVI-Fc. Bar ¼ 5 mm. Abbreviations as in Figure 1.
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FIGURE 4 Platelets Adhere Downstream to Sites of Plaque Collagen Not

Occupied by But in Close Proximity to GPVI-Fc as Revealed by SIM

Imaging

Plaque homogenates pre-stained with anti-collagen types I and III antibody

(Ab) and Alexa Fluor 405 conjugated second Ab were perfused with blood

containing Alexa Fluor 594–labeled GPVI-Fc (red) (50 mg/ml) and abciximab

(to block platelet aggregation) at a shear rate of 550/s. After 3 min of flow,

samples were fixed, and platelets (green) were stained with anti-CD41 Ab and

DyLight 488 conjugated second Ab. Structured illumination microscopy

fluorescence micrographs were taken of the subsequent 0.2-mm sections of

the sample, and 3-dimensional reconstructions were made with ImagePro

Premier 3D (version 9.1, Media Cybernetics, Rockville, Maryland). (Top)

Three-dimensional overview of the sample (thickness, 3.6 mm). (Bottom)

Magnified subvolumes of the sample at 2 z positions from bottom to top (z1 ¼
1.0 to 1.6 mm; z2 ¼ 1.6 to 2.2 mm) revealing platelet adhesion to discrete sites

of plaque collagen (blue, arrows). Black arrow shows direction of blood flow.

Image is representative of 7 others (see also Online Video 8). SIM ¼ structured

illumination microscopy.
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highmagnificationdifferential interference contrast video
microscopy (Figure 3B, row 3, Online Video 7). At high
shear, platelet attachment downstream of the plaque was
unstable in the presence ofGPVI-Fc andmuch less platelet
aggregate formation was observed (Online Figure 6B).

To better visualize the plaque sites to which plate-
lets adhered under flow (550/s) in the presence of
GPVI-Fc, we performed super-resolution microscopy
using structured illumination microscopy (SIM) (30).
GPVI-Fc bound as dots, often in a string-like pattern, to
collagen upstream and downstream of plaque frag-
ments, yet leaving stretches of plaque collagen unoc-
cupied by GPVI-Fc (Figure 4, 3-dimensional image in
Online Video 8). Platelets adhered to discrete sites of
collagen fibers at different z-levels of plaque. These
sites were sometimes in close proximity to GPVI-Fc
binding of collagen. Also in the structured illumina-
tion microscopy studies, platelets only adhered
downstream of plaque fragments.

Inhibition of the platelet P2Y12 receptor by cangrelor
and thromboxane A2 (TxA2) formation by aspirin
inhibited residual platelet aggregate formation in
the presence of GPVI-Fc at low shear rate flow
(Figure 5). When blood was treated with low,
threshold-inhibitory concentrations of 5C4, results
similar to those with GPVI-Fc at low shear rate were
seen (Online Figure 7, Online Video 9). Platelets
adhered to sites downstream of plaque fragments
that recruited nearby flowing platelets into aggre-
gates. Additional inhibition of the P2Y12 receptor and
TxA2 formation significantly reduced residual
platelet aggregate formation in the presence of low
5C4 concentrations (Online Figure 7).

DISCUSSION

The crucial role of GPVI-collagen interaction in plaque
rupture- or erosion-triggered thrombotic occlusion
stimulated the generation of specific inhibitors prom-
ising benefit beyond established dual-antiplatelet
therapy. To help define the most effective and safest
anti-GPVI strategy, we compared compounds tar-
geting GPVI-collagen interaction in various tests of
platelet response to plaque material under static and
arterial flow conditions. We found compound-specific
differences relevant to clinical trial design.

The antibodies recognizing platelet monomeric
and dimeric GPVI (BLO8-1, 5C4) inhibited collagen-
and plaque-induced platelet aggregation almost
completely under static and flow conditions at low
and high shear rates. Although preserved, platelet
adhesion was transient rather than stable. Inhibition
was less with GPVI-Fc. Dimeric GPVI is essential for
binding to collagen and activation of platelets (16–18),
and GPVI-Fc was constructed to mimic dimeric GPVI.
It binds to collagen with high affinity, thus concealing
GPVI-binding sites from platelets. Our results of
collagen- and plaque-induced static platelet aggre-
gation, in which the integrin a2b1- and the vWF-
binding sites of collagen do not play a role in
platelet activation, indicate that not all tandem GPO
motifs on collagen were occupied by GPVI-Fc, even
after pre-incubation with very high GPVI-Fc

http://jaccjacc.acc.org/video/2015/4229_VID7.mp4
http://jaccjacc.acc.org/video/2015/4229_VID8.mp4
http://jaccjacc.acc.org/video/2015/4229_VID9.mp4
http://jaccjacc.acc.org/video/2015/4229_VID8.mp4


FIGURE 5 Residual Platelet Aggregate Formation in the

Presence of GPVI-Fc Is Inhibited by Blockade of Platelet

Cyclooxygenase and the P2Y12 Receptor
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added to blood containing acetylsalicylic acid (ASA) (1 mM),

alone or in combination with GPVI-Fc. Blood was perfused over

plaque at a shear rate of 550/s. Mean � SD (n ¼ 5). p < 0.005

for treatment with ASA þ P2Y12 antagonist þ GPVI-Fc (endpoint)
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tions as in Figure 1.
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concentrations. These few unoccupied GPO sites may
suffice to trigger GPVI-induced signaling and subse-
quent ADP and TxA2 release, which then autoam-
plifies platelet activation under static and low shear
rate flow conditions. Indeed, we have previously
shown that in static assays plaque-induced aggrega-
tion is largely dependent on dense granule secretion
that is abolished by a combination of platelet cyclo-
oxygenase inhibition and P2Y12-receptor blockade
(26,27).

How does soluble dimeric GPVI-Fc differ from
platelet GPVI dimer? Plasmon surface resonance
yielded a low dissociation constant of collagen
GPVI-Fc binding (KD ¼ 1.17 � 10�7 M), as reported
previously (17). In line with the high affinity of GPVI-Fc
to collagen, fluorescent-labeled GPVI-Fc added to
flowing blood rapidly bound to plaque. This binding
was stable, indicating a very low off rate of GPVI-Fc.
Differences between soluble GPVI-Fc and platelet
GPVI dimer must be due to factors other than affinity.
First, GPVI dimers are recruited from monomers dur-
ing platelet activation and cluster in lipid rafts leading
to a high local GPVI-dimer density on the platelet
surface (15,16,31). Second, spacing of the 2 collagen
binding sites on dimeric GPVI-Fc lacking the mucin-
like stems of the platelet GPVI dimer might be less
flexible and may not always fit with the GPO repeats
exposed on plaque collagen (Central Illustration A,
left). This might explain why even pre-incubation of
plaque with very high GPVI-Fc concentrations did not
enhance platelet inhibition under static and low shear
rate flow conditions (Figure 1, Online Figures 1 and 4).
Third, the superior suppression of plaque-induced
platelet aggregation by anti-GPVI antibodies recog-
nizing both monomeric and dimeric platelet GPVI
suggests that monomeric GPVI is functionally impor-
tant. By also binding to monomers, these antibodies
might impair dimer recruitment during platelet acti-
vation (15,16) (Central Illustration B).

Our imaging studies demonstrate that GPVI-Fc
bound equally well to plaque collagen at high and
low shear rates, both up- and downstream of plaque
fragments. However, plaque collagen sites not occu-
pied by GPVI-Fc arrested platelets mainly under low
shear rate flow, when flow niches downstream of
plaque fragments might create nearly static condi-
tions. On the basis of our imaging studies and ADP/
TxA2 inhibition experiments, we suggest that GPVI
signaling in a few platelets attaching downstream of
the plaque induces stable adhesion and recruitment
of circulating platelets into aggregates by the local
release of TxA2 and ADP (Central Illustration A, top).
Our results with low threshold-inhibitory concentra-
tions of 5C4 further support such a mechanism. At
high flow velocities, ADP and TxA2 will be flushed
away, contributing to the increased effectiveness of
GPVI-Fc at higher shear rates (Central Illustration A,
bottom). An additional mechanism may be GPVI-Fc
occupying vWF binding sites of collagen, which
would inhibit vWF-mediated platelet adhesion rele-
vant at high shear (32).

Surprisingly, the subtle (<8 mm) roughness of the
plaque surface in our model created local differences
in dynamics and extent of plaque-induced platelet
aggregate formation at low and high shear rates in the
presence of GPVI-Fc. Coronary thrombosis mostly
arises from rupture of thin-capped (<65 mm) fibroa-
theroma, exposing the plaque necrotic core con-
taining collagenous structures to circulating blood
(6,33,34). This creates a new thrombogenic and
rough luminal surface that will influence the
dynamics of platelet adhesion and aggregation,
probably similar to our ex vivo plaque model.
Although nonstenotic coronary lesions with physio-
logical wall shear rates (500/s to 600/s) may rupture,
coronary atheromas with the highest risk to cause
myocardial infarction are at least 50% stenotic with
shear rates of w1,500/s (35). Rupture frequently oc-
curs at the inflamed macrophage-rich plaque shoul-
der or at the most stenotic part, where endothelial
shear stress is highest (36). The potent platelet inhi-
bition by GPVI-Fc at high shear suggests locally
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Glycoprotein VI is an essential platelet collagen receptor. (A)Dimeric fusion protein GPVI-Fc binds to exposed GPO sites of collagen up- and downstream after plaque rupture
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: In

static and flow models of human plaque-induced

platelet activation, antibodies against platelet GPVI re-

ceptors aremore potent inhibitors than aGPVI-Fc fusion

protein that conceals plaque collagen from platelets.

However, the potency of GPVI-Fc increases with shear

rate and localizes the action to the site of plaque rupture

or injury while preserving systemic platelet function,

even after excess and prolonged exposure.

TRANSLATIONAL OUTLOOK: The differential ac-

tions of these compounds targeting the GPVI-collagen

axis have implications for the design of clinical trials:

anti–GPIV-antibodies might provide superior antith-

rombotic efficacy, but might be burdened with a higher

bleeding risk than GPVI-Fc, especially when tested in

combinationwithestablisheddual-antiplatelet therapy.
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enhanced antithrombotic efficacy of GPVI-Fc at
ruptured high-risk lesions.

Given its action at the ruptured plaque and its flow-
dependent platelet inhibition, GPVI-Fc is expected to
be safer than GPVI antibodies for systemic bleeding
risk. GPVI antibodies target all circulating platelets as
do established antiplatelet drugs such as aspirin and
P2Y12 antagonists, which increase bleeding. In fact,
GPVI-Fc alone showed no increased bleeding in a
phase I study (21). Under static and low shear rate flow
conditions, GPVI-Fc, unlike GPVI antibodies, inhibited
plaque- and collagen-initiated platelet aggregation
only moderately. Because major bleeding complica-
tions arise mainly from vessels with lower flow veloc-
ities and shear rates than coronary arteries, safety
concerns of triple platelet inhibition would appear
lowerwith GPVI-Fc thanwith GPVI antibodies. Indeed,
in mice, GPVI-Fc did not worsen bleeding time when
combined with established common antithrombotic
drugs such as aspirin, P2Y12 antagonists, and heparin
alone or in combination (37).

Anti-GPVI antibodies causing systemic platelet inhibi-
tion could increase bleeding. Patients with rare genetic or
acquired GPVI defects show a variable bleeding diathesis
depending on clinical background (14). Although the tail
bleeding time of GPVI-deficient mice is only moderately
increased (21), depletion of platelet GPVI by antibody
treatment severely compromised hemostasis inmice with
concomitant aspirin therapy (38). Additionally, anti-GPVI
antibodies can cause immune responses and long-lasting
platelet GPVI depletion through GPVI shedding or other
mechanisms (14). It is not yet knownwhether BLO8-1 and
5C4 have these effects. BLO8-1 is a human domain anti-
body (the smallest functional binding units of human Igs)
that is less likely to be immunogenic and more likely to
resist proteolytic degradation.

STUDY LIMITATIONS. This was an ex vivo study
exposing plaque material to blood of healthy persons
and not an in vivo study after plaque rupture of car-
diovascular patients.

CONCLUSIONS

Antibodies targeting platelet dimeric and monomeric
GPVI are more effective inhibitors of plaque-induced
platelet aggregation in static and dynamic models
than GPVI-Fc masking GPVI-binding motifs on
exposed plaque collagen. However, GPVI-Fc inhibi-
tion is flow dependent and increases with shear rate.
This suggests a focused antithrombotic efficacy at
rupture sites of high-risk lesions. Under low shear
rate flow, GPVI-Fc synergizes with aspirin and P2Y12

antagonists in platelet inhibition. Thus, compounds
targeting the GPVI-collagen axis have antiatheroth-
rombotic potential beyond standard dual-antiplatelet
therapy, and GPVI-Fc might be safer than antibodies
directed against GPVI.
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