390 research outputs found

    On the Realization of Non-Linear Pseudo-Noise Generator for various Signal Processing and Communication Applications

    Get PDF
    In digital communication systems and digital signal processing, the design of pseudo-noise (PN) sequences having good correlation properties has been one of the most important development steps. Its well-known application areas include spread spectrum communications, Multiuser Communications, Digital Signal Processing for reduction of power spectral density, mitigation of Multiple Access Interference (MAI) and improvement of signal to noise ratio (SNR) respectively. In this paper a performance of non- linear PN code generator for interference rejection improvement of signal to noise ratio in signal processing applications have been studied.  The signal of interest can be considered to be a digitally controlled wide band digital chaotic signal, which has been implemented by conventional PN code generators.  The proposed technique can be used as an alternative code for improvement in signal to noise ratio, interference rejection, spreading code for various signal processing and communication applications.  The proposed scheme has been implemented using matlab as a simulation tool.  Power spectral density, auto-correlation and cross-correlation property have been thoroughly studied and has been compared with conventional scheme and are presented in the paper. Keywords: PN Code Generator, Spread Spectrum Modulation, Auto-correlation, Cross-correlation, Power Spectral Density

    Data Hiding in Color Images: A High Capacity Data Hiding Technique for Covert Communication

    Get PDF
    A high capacity data hiding technique using color images as cover medium and referred to as 4R-4G-4B technique has been investigated and presented in this paper. The color image is firstly divided into its constituent bit planes followed by data embedding. To thwart the adversary different embedding algorithms have been used for embedding data in Red, Green and Blue planes. Additional layer of security to the embedded data is added by embedding secret data at the pseudorandom locations determined by Main Address Vector (MAV) and Complementary Address Vector (CAV). The comparison of our method with an existing technique shows that proposed technique is capable of providing better quality stego-images even if the embedded data is slightly more. A 2.7dB increase in PSNR in case of proposed technique substantiates the argument

    Economic loss assessment on juvenile fish catch due to forced non-selectivity in a selective fishing gear, gillnet along Mumbai coast, India

    Get PDF
    A study on quantity and value of juvenile fish landings was carried out in the gillnet fishery of three selected landing centers along Mumbai coast viz., Versova, Cuff Parade and Mahim in India using Out board motors (OBM), Inboard motors (IBM) and non-motorised gillnetters respectively. The data on the quantity and value of landed juveniles were collected and analysed to reach a consensus on the gross economic loss on account of juvenile fishing. A bio-economic model was used to estimate economic loss due to juvenile fishing of 18 commercially important species of finfish and shellfish. A huge economic loss was recorded due to fishing of juveniles of 18 species by three different gillnet sectors. The analysis indicated that IBM gillnetters at Cuff Parade incurred maximum loss of Rs. 62.26 crores with major contribution from juveniles of seerfish followed by non-motorised gillnetter (Rs.29.98 crores) at Mahim and 25.33 crores in OBM gillnetters at Versova

    Climate Change-Its Impact on Agriculture

    Get PDF
    Global warming has effects and consequences on all walks of life. The consequences of global warming can be seen in the atmospheric weather, local climate change, glacier retreat and disappearance, oceans, seal level rise, acidification, forest fires, ozone depletion, agriculture, water scarcity  as well as the health of individuals. An increase of 2ºC in temperature could decrease the rice yield by about 0.75 t/ha and 0.5ºC increase in winter temperature reduce wheat yield 0.45 t/ha. Results showed that about 7.4, 8.7 and 9.8 per cent of total cumulative CO2, SO2 and NO2 emission respectively could be avoided between 1997 and 2015 by using efficient appliances. Improved training and general education of populations dependent on agriculture. Agriculture research to develop new crop varieties. Identification of the present vulnerabilities of agricultural systems. Food programmes and other social security programmes to provide insurance against supply changes. Transportation, distribution and market integration to provide the infrastructure to supply food during crop short falls. It is imperative that the developed countries and the rapidly developing countries formulate strategies to curb greenhouse gas emissions. Countries on the fast tract of economic growth should also look at adopting new energy-saving technologies and planting of more trees. The emphasis should also be laid on increasing the use of renewable energy sources like solar and wind. It is high time for leading emitters of CO2 to formulate national programmes to address climate change. Key words: Climatic change, Agriculture, Environment, Variables Shabir Ahmad Wani et al. Climate Change-Its Impact on Agriculture. J Phytol 2/10 (2010) 82-8

    Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions

    Get PDF
    This work was supported in part by the European Union, Area NMP.2013.1.1–2: Self-assembly of naturally occurring nanosystems: CellulosomePlus Project number: 604530, and by the EU Seventh Framework Programme (FP7 2007–2013) under the WallTraC project (Grant Agreement no 263916), and BioStruct-X (grant agreement no 283570). This paper reflects the author’s views only. The European Community is not liable for any use that may be made of the information contained herein. CMGAF is also supported by Fundação para a Ciência e a Tecnologia (Lisbon, Portugal) through grants PTDC/BIA-PRO/103980/2008 and EXPL/BIA-MIC/1176/2012. EAB is also funded by a grant (No. 1349/13) from the Israel Science Foundation (ISF), Jerusalem, Israel and by a grant (No. 2013284) from the U.S.-Israel Binational Science Foundation (BSF). E.A.B. is the incumbent of The Maynard I. and Elaine Wishner Chair of Bio-organic Chemistry.Peer reviewedPublisher PD

    Transgenesis: An efficient tool in mulberry breeding

    Get PDF
    Genetic engineering is the most potent biotechnological approach dealing with transfer of specially constructed gene assemblies through various transformation techniques. Tools of recombinant DNA technology facilitated development of transgenic plants.  The plants obtained through genetic engineering contain a gene or genes usually from an unrelated organisms, and are known as transgenic plants. The combined use of recombinant DNA technology, gene transfer methods and tissue culture techniques has  led to the efficient transformation and production of transgenics in a wide variety of crop plants. In fact transgenesis has emerged as a novel tool for carrying out “single gene breeding” or transgenic breeding of crop plants. Identification, isolation and cloning of resistant genes is the prerequisite for development of transgenic plants for disease resistance. Identification of resistance genes on the basis of amino acid sequence, conservation enables plant breeder to monitor resistance gene segregation using  appropriate DNA probe intend of testing progeny for disease resistance and susceptibility. Significant developments in plant  genetic modification have been achieved in the last 15 years. Some of the success include herbicide tolerant corn, cotton,  soyabeen and papaya; virus resistant corn, potato, cotton among others. In mulberry, little work has been carried out at Delhi University (south campus). They have developed drought and salinity tolerent transgenic mulberry through Agrobacterium mediated transformation. The overexpression of HVA1 gene from barley generates tolerence to salinity and water stress in  transgenic mulberry (Morus indica).Keywords: Transgenic plant, mulberry, resistance, salinity

    Structure and mechanism of acetolactate decarboxylase

    Get PDF
    Acetolactate decarboxylase catalyzes the conversion of both enantiomers of acetolactate to the (R)-enantiomer of acetoin, via a mechanism that has been shown to involve a prior rearrangement of the non-natural (R)-enantiomer substrate to the natural (S)-enantiomer. In this paper, a series of crystal structures of ALDC complex with designed transition state mimics are reported. These structures, coupled with inhibition studies and site-directed mutagenesis provide an improved understanding of the molecular processes involved in the stereoselective decarboxylation/protonation events. A mechanism for the transformation of each enantiomer of acetolactate is proposed

    The case for launch of an international DNA-based birth cohort study

    Get PDF
    The global health agenda beyond 2015 will inevitably need to broaden its focus from mortality reduction to the social determinants of deaths, growing inequities among children and mothers, and ensuring the sustainability of the progress made against the infectious diseases. New research tools, including technologies that enable high-throughput genetic and ‘-omics’ research, could be deployed for better understanding of the aetiology of maternal and child health problems. The research needed to address those challenges will require conceptually different studies than those used in the past. It should be guided by stringent ethical frameworks related to the emerging collections of biological specimens and other health related information. We will aim to establish an international birth cohort which should assist low- and middle-income countries to use emerging genomic research technologies to address the main problems in maternal and child health, which are still major contributors to the burden of disease globally

    A dual cohesin-dockerin complex binding mode in Bacteroides cellulosolvens contributes to the size and complexity of its cellulosome

    Get PDF
    The Cellulosome is an intricate macromolecular protein complex that centralizes the cellulolytic efforts of many anaerobic microorganisms through the promotion of enzyme synergy and protein stability. The assembly of numerous carbohydrate processing enzymes into a macromolecular multiprotein structure results from the interaction of enzyme-borne dockerin modules with repeated cohesin modules present in noncatalytic scaffold proteins, termed scaffoldins. Cohesin- dockerin (Coh-Doc) modules are typically classified into different types, depending on structural conformation and cellulosome role. Thus, type I Coh-Doc complexes are usually responsible for enzyme integration into the cellulosome, while type II Coh-Doc complexes tether the cellulosome to the bacterial wall. In contrast to other known cellulosomes, cohesin types from Bacteroides cellulosolvens, a cellulosome-producing bacterium capable of utilizing cellulose and cellobiose as carbon sources, are reversed for all scaffoldins, i.e., the type II cohesins are located on the enzyme-integrating primary scaffoldin, whereas the type I cohesins are located on the anchoring scaffoldins. It has been previously shown that type I B. cellulosolvens interactions possess a dual-binding mode that adds flexibility to scaffoldin assembly. Herein, we report the structural mechanism of enzyme recruitment into B. cellulosolvens cellulosome and the identification of the molecular determinants of its type II cohesin-dockerin interactions. The results indicate that, unlike other type II complexes, these possess a dual-binding mode of interaction, akin to type I complexes. Therefore, the plasticity of dualbinding mode interactions seems to play a pivotal role in the assembly of B. cellulosolvens cellulosome, which is consistent with its unmatched complexity and size.publishersversionpublishe
    corecore