236 research outputs found

    Ecophysiology of halophytes: questions and challenges

    Get PDF
    Halophytes are able to tolerate and even benefit from salt concentrations that kill most other plant species and, at the very least, may provide genes that allow transgenic conference of salinity tolerance to crops. In addition, some halophytes have already been tested as vegetable, forage and oilseed crops. However, physiological mechanisms behind the remarkable ability of halophytes to live in highly saline environment are not fully understood. This talk highlights some unanswered questions and challenges in understanding halophyte physiology, with a specific emphasis on complexity of plant-environmental interaction

    Difference in root K+ retention ability and reduced sensitivity of K+ -permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species

    Get PDF
    Brassica species are known to possess significant inter and intraspecies variability in salinity stress tolerance, but the cell-specific mechanisms conferring this difference remain elusive. In this work, the role and relative contribution of several key plasma membrane transporters to salinity stress tolerance were evaluated in three Brassica species (B. napus, B. juncea, and B. oleracea) using a range of electrophysiological assays. Initial root growth assay and viability staining revealed that B. napus was most tolerant amongst the three species, followed by B. juncea and B. oleracea. At the mechanistic level, this difference was conferred by at least three complementary physiological mechanisms: (i) higher Na+ extrusion ability from roots resulting from increased expression and activity of plasma membrane SOS1-like Na+/H+ exchangers; (ii) better root K+ retention ability resulting from stress-inducible activation of H+-ATPase and ability to maintain more negative membrane potential under saline conditions; and (iii) reduced sensitivity of B. napus root K+ -permeable channels to reactive oxygen species (ROS). The last two mechanisms played the dominant role and conferred most of the differential salt sensitivity between species. Brassica napus plants were also more efficient in preventing the stress-induced increase in GORK transcript levels and up-regulation of expression of AKT1, HAK5, and HKT1 transporter genes. Taken together, our data provide the mechanistic explanation for differential salt stress sensitivity amongst these species and shed light on transcriptional and post-translational regulation of key ion transport systems involved in the maintenance of the root plasma membrane potential and cytosolic K/Na ratio as a key attribute for salt tolerance in Brassica species

    SV channels dominate the vacuolar Ca2+ release during intracellular signaling

    Get PDF
    AbstractVacuoles have long been suggested to mediate a rise in the cytosolic free Ca2+ during environmental signal transduction. This study addresses the issue of the control of vacuolar calcium release by some of the known signaling molecules such as IP3, cADPR, ABA, ATP, cAMP, cGMP, H2O2 and CaM. Over 30 concentrations and/or combinations of these signaling compounds were studied in a series of electrophysiological experiments involving non-invasive ion flux measurements (the MIFE) and patch-clamp techniques. Our results suggest that calcium, calmodulin and nucleotides cause calcium release via SV channels

    Reproductive Physiology of Halophytes: Current Standing

    Get PDF
    Background: Halophytes possess efficient salt-tolerance mechanisms and can complete their life cycles in naturally saline soils with NaCl contents exceeding 200 mM. While a significant progress have been made in recent decades elucidating underlying salt-tolerance mechanisms, these studies have been mostly confined to the vegetative growth stage. At the same time, the capacity to generate high-quality seeds and to survive early developmental stages under saline conditions, are both critically important for plants. Halophytes perform well in both regards, whereas non-halophytes cannot normally complete their life cycles under saline conditions.Scope: Research into the effects of salinity on plant reproductive biology has gained momentum in recent years. However, it remains unclear whether the reproductive biology of halophytes differs from that of non-halophytes, and whether their reproductive processes benefit, like their vegetative growth, from the presence of salt in the rhizosphere. Here, we summarize current knowledge of the mechanisms underlying the superior reproductive biology of halophytes, focusing on critical aspects including control of flowering time, changes in plant hormonal status and their impact on anther and pollen development and viability, plant carbohydrate status and seed formation, mechanisms behind the early germination of halophyte seeds, and the role of seed polymorphism.Conclusion: Salt has beneficial effects on halophyte reproductive growth that include late flowering, increased flower numbers and pollen vitality, and high seed yield. This improved performance is due to optimal nutrition during vegetative growth, alterations in plant hormonal status, and regulation of flowering genes. In addition, the seeds of halophytes harvested under saline conditions show higher salt tolerance than those obtained under non-saline condition, largely due to increased osmolyte accumulation, more optimal hormonal composition (e.g., high gibberellic acid and low abcisic acid content) and, in some species, seed dimorphism. In the near future, identifying key genes involved in halophyte reproductive physiology and using them to transform crops could be a promising approach to developing saline agriculture

    Calcium efflux systems in stress signaling and adaptation in plants

    Get PDF
    Transient cytosolic calcium ([Ca(2+)](cyt)) elevation is an ubiquitous denominator of the signaling network when plants are exposed to literally every known abiotic and biotic stress. These stress-induced [Ca(2+)](cyt) elevations vary in magnitude, frequency, and shape, depending on the severity of the stress as well the type of stress experienced. This creates a unique stress-specific calcium “signature” that is then decoded by signal transduction networks. While most published papers have been focused predominantly on the role of Ca(2+) influx mechanisms to shaping [Ca(2+)](cyt) signatures, restoration of the basal [Ca(2+)](cyt) levels is impossible without both cytosolic Ca(2+) buffering and efficient Ca(2+) efflux mechanisms removing excess Ca(2+) from cytosol, to reload Ca(2+) stores and to terminate Ca(2+) signaling. This is the topic of the current review. The molecular identity of two major types of Ca(2+) efflux systems, Ca(2+)-ATPase pumps and Ca(2+)/H(+) exchangers, is described, and their regulatory modes are analyzed in detail. The spatial and temporal organization of calcium signaling networks is described, and the importance of existence of intracellular calcium microdomains is discussed. Experimental evidence for the role of Ca(2+) efflux systems in plant responses to a range of abiotic and biotic factors is summarized. Contribution of Ca(2+)-ATPase pumps and Ca(2+)/H(+) exchangers in shaping [Ca(2+)](cyt) signatures is then modeled by using a four-component model (plasma- and endo-membrane-based Ca(2+)-permeable channels and efflux systems) taking into account the cytosolic Ca(2+) buffering. It is concluded that physiologically relevant variations in the activity of Ca(2+)-ATPase pumps and Ca(2+)/H(+) exchangers are sufficient to fully describe all the reported experimental evidence and determine the shape of [Ca(2+)](cyt) signatures in response to environmental stimuli, emphasizing the crucial role these active efflux systems play in plant adaptive responses to environment

    Root vacuolar Na+ sequestration but not exclusion from uptake correlates with barley salt tolerance.

    Get PDF
    SummarySoil salinity is a major constraint for the global agricultural production. For many decades, Na+ exclusion from uptake has been the key trait targeted in breeding programs; yet, no major breakthrough in creating salt‐tolerant germplasm was achieved. In this work, we have combined the microelectrode ion flux estimation (MIFE) technique for non‐invasive ion flux measurements with confocal fluorescence dye imaging technique to screen 45 accessions of barley to reveal the relative contribution of Na+ exclusion from the cytosol to the apoplast and its vacuolar sequestration in the root apex, for the overall salinity stress tolerance. We show that Na+/H+ antiporter‐mediated Na+ extrusion from the root plays a minor role in the overall salt tolerance in barley. At the same time, a strong and positive correlation was found between root vacuolar Na+ sequestration ability and the overall salt tolerance. The inability of salt‐sensitive genotypes to sequester Na+ in root vacuoles was in contrast to significantly higher expression levels of both HvNHX1 tonoplast Na+/H+ antiporters and HvVP1 H+‐pumps compared with tolerant genotypes. These data are interpreted as a failure of sensitive varieties to prevent Na+ back‐leak into the cytosol and existence of a futile Na+ cycle at the tonoplast. Taken together, our results demonstrated that root vacuolar Na+ sequestration but not exclusion from uptake played the main role in barley salinity tolerance, and suggested that the focus of the breeding programs should be shifted from targeting genes mediating Na+ exclusion from uptake by roots to more efficient root vacuolar Na+ sequestration

    Unravelling the physiological basis of salinity stress tolerance in cultivated and wild rice species

    Get PDF
    Wild rice species provide a rich source of genetic diversity for possible introgression of salinity stress tolerance in cultivated rice. We investigated the physiological basis of salinity stress tolerance in Oryza species by using six rice genotypes (Oryza sativa L.) and four wild rice species. Three weeks of salinity treatment significantly (P < 0.05) reduced physiological and growth indices of all cultivated and wild rice lines. However, the impact of salinity-induced growth reduction differed substantially among accessions. Salt tolerant accessions showed better control over gas exchange properties, exhibited higher tissue tolerance, and retained higher potassium ion content despite higher sodium ion accumulation in leaves. Wild rice species showed relatively lower and steadier xylem sap sodium ion content over the period of 3 weeks analysed, suggesting better control over ionic sodium xylem loading and its delivery to shoots with efficient vacuolar sodium ion sequestration. Contrary to this, saline sensitive genotypes managed to avoid initial Na+ loading but failed to accomplish this in the long term and showed higher sap sodium ion content. Conclusively, our results suggest that wild rice genotypes have more efficient control over xylem sodium ion loading, rely on tissue tolerance mechanisms and allow for a rapid osmotic adjustment by using sodium ions as cheap osmoticum for osmoregulation

    Comparative analysis of Root Na+ relation under salinity between Oryza sativa and Oryza coarctata

    Get PDF
    Na+ toxicity is one of the major physiological constraints imposed by salinity on plant performance. At the same time, Na+ uptake may be beneficial under some circumstances as an easily accessible inorganic ion that can be used for increasing solute concentrations and maintaining cell turgor. Two rice species, Oryza sativa (cultivated rice, salt-sensitive) and Oryza coarctata (wild rice, salt-tolerant), demonstrated different strategies in controlling Na+ uptake. Glasshouse experiments and gene expression analysis suggested that salt-treated wild rice quickly increased xylem Na+ loading for osmotic adjustment but maintained a non-toxic level of stable shoot Na+ concentration by increased activity of a high affinity K+ transporter HKT1;5 (essential for xylem Na+ unloading) and a Na+ /H+ exchanger NHX (for sequestering Na+ and K+ into root vacuoles). Cultivated rice prevented Na+ uptake and transport to the shoot at the beginning of salt treatment but failed to maintain it in the long term. While electrophysiological assays revealed greater net Na+ uptake upon salt application in cultivated rice, O. sativa plants showed much stronger activation of the root plasma membrane Na+ /H+ Salt Overly Sensitive 1 (SOS1) exchanger. Thus, it appears that wild rice limits passive Na+ entry into root cells while cultivated rice relies heavily on SOS1-mediating Na+ exclusion, with major penalties imposed by the existence of the “futile cycle” at the plasma membrane

    Revealing the role of the calcineurin B-like protein-interacting protein kinase 9 (CIPK9) in rice adaptive responses to salinity, osmotic stress, and K+ deficiency

    Get PDF
    In plants, calcineurin B-like (CBL) proteins and their interacting protein kinases (CIPK) form functional complexes that transduce downstream signals to membrane effectors assisting in their adaptation to adverse environmental conditions. This study addresses the issue of the physiological role of CIPK9 in adaptive responses to salinity, osmotic stress, and K+ deficiency in rice plants. Whole-plant physiological studies revealed that Oscipk9 rice mutant lacks a functional CIPK9 gene and displayed a mildly stronger phenotype, both under saline and osmotic stress conditions. The reported difference was attributed to the ability of Oscipk9 to maintain significantly higher stomatal conductance (thus, a greater carbon gain). Oscipk9 plants contained much less K+ in their tissues, implying the role of CIPK9 in K+ acquisition and homeostasis in rice. Oscipk9 roots also showed hypersensitivity to ROS under conditions of low K+ availability suggesting an important role of H2O2 signalling as a component of plant adaptive responses to a low-K environment. The likely mechanistic basis of above physiological responses is discussed
    corecore