1,540 research outputs found
Exploring of teaching effect of course “vehicle chassis structure” based on the teaching mode of divided class
University is an important transit station for students to enter social life, undertaking the important mission of personnel training. Nowadays, a series of challenges exists in university education. It is very important to strengthen the teaching effect of cases in the classroom. The course “Vehicle chassis structure” is a compulsory professional course for undergraduate students majoring in automotive engineering. This work has proposed a teaching mode of divided class for the course of “Vehicle chassis structure”. And it can be concluded that the teaching effect can be improved largely via the teaching mode of divided class. The main purpose of this method is to improve students\u27 initiative learning ability and mutual help and cooperation ability
Augmenting Graphs to Minimize the Radius
We study the problem of augmenting a metric graph by adding k edges while minimizing the radius of the augmented graph. We give a simple 3-approximation algorithm and show that there is no polynomial-time (5/3-?)-approximation algorithm, for any ? > 0, unless P = NP.
We also give two exact algorithms for the special case when the input graph is a tree, one of which is generalized to handle metric graphs with bounded treewidth
Multiobjective Reliable Cloud Storage with Its Particle Swarm Optimization Algorithm
Information abounds in all fields of the real life, which is often recorded as digital data in computer systems and treated as a kind of increasingly important resource. Its increasing volume growth causes great difficulties in both storage and analysis. The massive data storage in cloud environments has significant impacts on the quality of service (QoS) of the systems, which is becoming an increasingly challenging problem. In this paper, we propose a multiobjective optimization model for the reliable data storage in clouds through considering both cost and reliability of the storage service simultaneously. In the proposed model, the total cost is analyzed to be composed of storage space occupation cost, data migration cost, and communication cost. According to the analysis of the storage process, the transmission reliability, equipment stability, and software reliability are taken into account in the storage reliability evaluation. To solve the proposed multiobjective model, a Constrained Multiobjective Particle Swarm Optimization (CMPSO) algorithm is designed. At last, experiments are designed to validate the proposed model and its solution PSO algorithm. In the experiments, the proposed model is tested in cooperation with 3 storage strategies. Experimental results show that the proposed model is positive and effective. The experimental results also demonstrate that the proposed model can perform much better in alliance with proper file splitting methods
Seed Oil of Brucea javanica Induces Apoptotic Death of Acute Myeloid Leukemia Cells via Both the Death Receptors and the Mitochondrial-Related Pathways
Seed oil of Brucea javanica (BJO) is extracted from the seeds of herb medicine Brucea javanica (L.), and its emulsion formulation (BJOE) has been used clinically to treat carcinomas for many years in China. The antileukemia potential of BJO was investigated in human acute myeloid leukemia cell lines (AML) U937 and HL-60 in vitro and in a mouse U937 xenograft tumor model. BJO induced AML cell apoptosis through activation of caspase-8 and modulation of apoptosis-related proteins. Meanwhile, the inhibition of survivin and XIAP increased the cytotoxicity of BJO. Consistent with these findings, BJO also increased subG1 phase cells and cause PARP cleavage in AML patients' leukemia cells. In contrast, only weak cytotoxicity of BJO was found in peripheral blood lymphocytes (PBLs) of healthy volunteers. Moreover, oleic acid and linoleic acid were found to be the active components of BJO. Our study provided strong evidence for the first time that BJO induced apoptosis of both cultured and primary AML cells. Furthermore, intravenous injection of BJO significantly inhibited U937 tumor growth in the xenograft mouse model. These results suggest that BJO may have a therapeutic role in the treatment of human leukemia
Self-assembly of noble metal nanoparticles into sub-100 nm colloidosomes with collective optical and catalytic properties.
Self-assembly at the nanoscale represents a powerful tool for creating materials with new structures and intriguing collective properties. Here, we report a novel strategy to synthesize nanoscale colloidosomes of noble metals by assembling primary metal nanoparticles at the interface of emulsion droplets formed by their capping agent. This strategy produces noble metal colloidosomes of unprecedentedly small sizes (<100 nm) in high yield and uniformity, which is highly desirable for practical applications. In addition, it enables the high tunability of the composition, producing a diversity of monometallic and bimetallic alloy colloidosomes. The colloidosomes exhibit interesting collective properties that are different from those of individual colloidal nanoparticles. Specifically, we demonstrate Au colloidosomes with well-controlled interparticle plasmon coupling and Au-Pd alloy colloidosomes with superior electrocatalytic performance, both thanks to the special structural features that arise from the assembly. We believe this strategy provides a general platform for producing a rich class of miniature colloidosomes that may have fascinating collective properties for a broad range of applications
- …