21 research outputs found

    Nanocomposite anion exchange membranes with a conductive semi-interpenetrating silica network

    Get PDF
    Nanocomposite anion exchange membranes were synthesized based on poly(sulfone trimethylammonium) chloride. A hybrid semi-interpenetrating silica network containing a large amount of quaternary ammonium groups was prepared by two sol–gel routes, in situ with a single precursor, N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TMSP), or ex situ mixing two precursors, TMSP and 3-(2-aminoethylamino)propyldimethoxy-methylsilane (AEAPS). The properties of these hybrid composites and their degradation after immersion in 1 M KOH at 60 °C were studied. The degradation is reduced in the composite materials with a lower decrease in the ion exchange capacity. FTIR spectra showed that a main degradation mechanism with a single precursor TMSP is the dissolution of the hybrid silica network in KOH, whereas it is stable with the mixture of TMSP/AEASP. This conclusion is in agreement with the thermogravimetric analysis. The mechanical properties show a better ductility with a single precursor and higher stiffness and strength, but less ductility, by the ex situ route. The activation energy was between 0.25 and 0.14 eV for Cl and OH ion conduction, respectively, consistent with the migration mechanism

    Proton conducting membranes based on sulfonated aromatic polymers for PEM fuel cells: synthesis and properties

    Get PDF
    The proton exchange membrane is the heart of polymer electrolyte membrane (PEM) fuel cells. In order to obtain good fuel cells performances, the membranes should exhibit at temperatures above 100°C and low relative humidity morphological, hydrolytic and mechanical stability. In this thesis two different strategies for the synthesis of proton conducting membranes based on sulfonated aromatic polymers have been explored: hybrid organic-inorganic nanocomposites and formation of inter-chain links as a result of heat treatments. The use of hybrid materials allows to exploit the synergistic effect of the simultaneous presence of an organic component, the ionomer, and an inorganic component. In particular, a mixture of S-PEEK with high degree of sulfonation, as majority compound, and a silylated polymer based on PPSU as minority component was studied. The S-PEEK is used to ensure high conductivity, while the Si-PPSU ensures good mechanical stability (anchor phase). Hybrid nanocomposites based on S-PEEK with dispersed functionalized TiO2 were also studied. The second strategy followed, the synthesis of crosslinked polymers, was very positive. In particular it was observed for the first time, that it was possible to obtain inter-chain sulfone bonds using appropriate thermal treatments in the presence of DMSO as solvent casting. It was proved that the membranes obtained are able to withstand water up to 145°C without significant swelling and maintain mechanical stability and good conductivity. The membranes were characterized using several techniques, including: thermo-gravimetric analysis, static and dynamic mechanical measurements, water absorption measurements, either by immersion or in vapour phase, IR and NMR spectroscopy, dielectric spectroscopy and impedance analysis

    FUEL CELL MEMBRANE

    No full text

    Silica Containing Composite Anion Exchange Membranes by Sol–Gel Synthesis: A Short Review

    No full text
    International audienceThis short review summarizes the literature on composite anion exchange membranes (AEM) containing an organo-silica network formed by sol-gel chemistry. The article covers AEM for diffusion dialysis (DD), for electrochemical energy technologies including fuel cells and redox flow batteries, and for electrodialysis. By applying a vast variety of organically modified silica compounds (ORMOSIL), many composite AEM reported in the last 15 years are based on poly (vinylalcohol) (PVA) or poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) used as polymer matrix. The most stringent requirements are high permselectivity and water flux for DD membranes, while high ionic conductivity is essential for electrochemical applications. Furthermore, the alkaline stability of AEM for fuel cell applications remains a challenging problem that is not yet solved. Possible future topics of investigation on composite AEM containing an organo-silica network are also discussed

    Anion Exchange Membranes with 1D, 2D and 3D Fillers: A Review

    No full text
    International audienceHydroxide exchange membrane fuel cells (AEMFC) are clean energy conversion devices that are an attractive alternative to the more common proton exchange membrane fuel cells (PEMFCs), because they present, among others, the advantage of not using noble metals like platinum as catalysts for the oxygen reduction reaction. The interest in this technology has increased exponentially over the recent years. Unfortunately, the low durability of anion exchange membranes (AEM) in basic conditions limits their use on a large scale. We present in this review composite AEM with one-dimensional, two-dimensional and three-dimensional fillers, an approach commonly used to enhance the fuel cell performance and stability. The most important filler types, which are discussed in this review, are carbon and titanate nanotubes, graphene and graphene oxide, layered double hydroxides, silica and zirconia nanoparticles. The functionalization of the fillers is the most important key to successful property improvement. The recent progress of mechanical properties, ionic conductivity and FC performances of composite AEM is critically reviewe

    Photocatalytic Degradation of Organic Pollutants—Nile Blue, Methylene Blue, and Bentazon Herbicide—Using NiO-ZnO Nanocomposite

    No full text
    Water pollution poses a significant threat to both human health and ecosystem integrity. Chemical pollutants such as dyes and pesticides affect the water quality and endanger aquatic life. Among the methods for water purification from organic pollutants, photodegradation is certainly a valid technique to decrease such contaminants. In this work, pristine NiO, ZnO, and NiO-ZnO photocatalysts were synthesized by the homogeneous co-precipitation method. X-ray diffraction confirms the formation of a photocatalyst consisting of ZnO (Hexagonal) and NiO (Cubic) structures. The crystalline size was calculated by the Scherrer formula, which is 19 nm for the NiO-ZnO photocatalyst. The band gap measurements of the prepared samples were obtained using the Tauc Plot, equation which is 2.93 eV, 3.35 eV and 2.63 eV for NiO, ZnO, and NiO-ZnO photocatalysts, respectively. The photocatalytic performance of NiO-ZnO nanocomposite was evaluated through the degradation of Methylene Blue and Nile Blue dyes under sunlight, and Bentazon herbicide under a UV light. Photocatalyst degradation efficiency was 95% and 97% for Methylene Blue and Nile Blue in 220 min under sunlight while a degradation of 70% for Bentazon after 100 min under UV light source was found

    A Short Overview of Biological Fuel Cells

    No full text
    This short review summarizes the improvements on biological fuel cells (BioFCs) with or without ionomer separation membrane. After a general introduction about the main challenges of modern energy management, BioFCs are presented including microbial fuel cells (MFCs) and enzymatic fuel cells (EFCs). The benefits of BioFCs include the capability to derive energy from waste-water and organic matter, the possibility to use bacteria or enzymes to replace expensive catalysts such as platinum, the high selectivity of the electrode reactions that allow working with less complicated systems, without the need for high purification, and the lower environmental impact. In comparison with classical FCs and given their lower electrochemical performances, BioFCs have, up to now, only found niche applications with low power needs, but they could become a green solution in the perspective of sustainable development and the circular economy. Ion exchange membranes for utilization in BioFCs are discussed in the final section of the review: they include perfluorinated proton exchange membranes but also aromatic polymers grafted with proton or anion exchange groups

    Improved Hydrolytic and Mechanical Stability of Sulfonated Aromatic Proton Exchange Membranes Reinforced by Electrospun PPSU Fibers

    No full text
    International audienceThe hydrolytic stability of ionomer membranes is a matter of concern for the long-term durability of energy storage and conversion devices. Various reinforcement strategies exist for the improvement of the performances of the overall membrane. We propose in this article the stabilization of membranes based on aromatic ion conducting polymers (SPEEK and SPPSU) by the introduction of an electrospun mat of inexpensive PPSU polymer. Characterization data from hydrolytic stability (mass uptake and dimension change) and from mechanical and conductivity measurements show an improved stability of membranes in phosphate buffer, used for enzymatic fuel cells, and in distilled water. The synergistic effect of the reinforcement, together with the casting solvent and the thermal treatment or blending polymers, is promising for the realization of high stability ionomer membranes
    corecore