479 research outputs found

    First optical images of circumstellar dust surrounding the debris disk candidate HD 32297

    Full text link
    Near-infrared imaging with the Hubble Space Telescope recently revealed a circumstellar dust disk around the A star HD 32297. Dust scattered light is detected as far as 400 AU radius and the linear morphology is consistent with a disk ~10 degrees away from an edge-on orientation. Here we present the first optical images that show the dust scattered light morphology from 560 to 1680 AU radius. The position angle of the putative disk midplane diverges by 31 degrees and the color of dust scattering is most likely blue. We associate HD 32297 with a wall of interstellar gas and the enigmatic region south of the Taurus molecular cloud. We propose that the extreme asymmetries and blue disk color originate from a collision with a clump of interstellar material as HD 32297 moves southward, and discuss evidence consistent with an age of 30 Myr or younger.Comment: 5 pages; Accepted for publication in ApJ Letter

    Surprisingly Little O VI Emission Arises in the Local Bubble

    Get PDF
    This paper reports the first study of the O VI resonance line emission (1032, 1038 Angstroms) originating in the Local Bubble (or Local Hot Bubble) surrounding the solar neighborhood. In spite of the fact that O VI absorption within the Local Bubble has been observed, no resonance line emission was detected during our 230 ksec Far Ultraviolet Spectroscopic Explorer observation toward a ``shadowing'' filament in the southern Galactic hemisphere. As a result, tight 2 sigma upper limits are set on the intensities in the 1032 and 1038 Angstrom emission lines: 500 and 530 photons cm^{-2} s^{-1} sr^{-1}, respectively. These values place strict constraints on models and simulations. They suggest that the O VI-bearing plasma and the X-ray emissive plasma reside in distinct regions of the Local Bubble and are not mixed in a single plasma, whether in equilibrium with T ~ 10^6 K or highly overionized with T ~ 4 to 6 x 10^4 K. If the line of sight intersects multiple cool clouds within the Local Bubble, then the results also suggest that hot/cool transition zones differ from those in current simulations. With these intensity upper limits, we establish limits on the electron density, thermal pressure, pathlength, and cooling timescale of the O VI-bearing plasma in the Local Bubble. Furthermore, the intensity of O VI resonance line doublet photons originating in the Galactic thick disk and halo is determined (3500 to 4300 photons cm^{-2} s^{-1} sr^{-1}), and the electron density, thermal pressure, pathlength, and cooling timescale of its O VI-bearing plasma are calculated. The pressure in the Galactic halo's O VI-bearing plasma (3100 to 3800 K cm^{-3}) agrees with model predictions for the total pressure in the thick disk/lower halo. We also report the results of searches for other emission lines.Comment: accepted by ApJ, scheduled for May 2003, replacement astro-ph submission corrects typos and grammatical errors in original versio

    FUSE Detection of Galactic OVI Emission in the Halo above the Perseus Arm

    Full text link
    Background observations obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) toward l=95.4, b=36.1 show OVI 1032,1038 in emission. This sight line probes a region of stronger-than-average soft X-ray emission in the direction of high-velocity cloud Complex C above a part of the disk where Halpha filaments rise into the halo. The OVI intensities, 1600+/-300 ph/s/cm^2/sr (1032A) and 800+/-300 ph/s/cm^2/sr (1038A), are the lowest detected in emission in the Milky Way to date. A second sight line nearby (l=99.3, b=43.3) also shows OVI 1032 emission, but with too low a signal-to-noise ratio to obtain reliable measurements. The measured intensities, velocities, and FWHMs of the OVI doublet and the CII* line at 1037A are consistent with a model in which the observed emission is produced in the Galactic halo by hot gas ejected by supernovae in the Perseus arm. An association of the observed gas with Complex C appears unlikely.Comment: accepted for publication in ApJL, 11 pages including 3 figure

    Evidence for deuterium astration in the planetary nebula Sh2-216?

    Get PDF
    We present FUSE observations of the line of sight to WD0439+466 (LS V +46 21), the central star of the old planetary nebula Sh2-216. The FUSE data shows absorption by many interstellar and stellar lines, in particular D I, H2 (J = 0 - 9), HD (J = 0 - 1), and CO. Many other stellar and ISM lines are detected in the STIS E140M HST spectra of this sightline, which we use to determine N(HI). We derive, for the neutral gas, D/H=(0.76 +0.12 -0.11)E-5, O/H = (0.89 +0.15 -0.11)E-4 and N/H = (3.24 +0.61-0.55)E-5. We argue that most of the gas along this sightline is associated with the planetary nebula. The low D/H ratio is likely the result of this gas being processed through the star (astrated) but not mixed with the ISM. This would be the first time that the D/H ratio has been measured in predominantly astrated gas. The O/H and N/H ratios derived here are lower than typical values measured in other planetary nebulae likely due to unaccounted for ionization corrections.Comment: Accepted for publication is ApJ

    An XMM-Newton Observation of the Local Bubble Using a Shadowing Filament in the Southern Galactic Hemisphere

    Get PDF
    We present an analysis of the X-ray spectrum of the Local Bubble, obtained by simultaneously analyzing spectra from two XMM-Newton pointings on and off an absorbing filament in the Southern galactic hemisphere (b ~ -45 deg). We use the difference in the Galactic column density in these two directions to deduce the contributions of the unabsorbed foreground emission due to the Local Bubble, and the absorbed emission from the Galactic halo and the extragalactic background. We find the Local Bubble emission is consistent with emission from a plasma in collisional ionization equilibrium with a temperature log⁡TLB=6.06−0.04+0.02\log T_{LB} = 6.06^{+0.02}_{-0.04} and an emission measure of 0.018 cm^{-6} pc. Our measured temperature is in good agreement with values obtained from ROSAT All-Sky Survey data, but is lower than that measured by other recent XMM-Newton observations of the Local Bubble, which find log⁡TLB≈6.2\log T_{LB} \approx 6.2 (although for some of these observations it is possible that the foreground emission is contaminated by non-Local Bubble emission from Loop I). The higher temperature observed towards other directions is inconsistent with our data, when combined with a FUSE measurement of the Galactic halo O VI intensity. This therefore suggests that the Local Bubble is thermally anisotropic. Our data are unable to rule out a non-equilibrium model in which the plasma is underionized. However, an overionized recombining plasma model, while observationally acceptable for certain densities and temperatures, generally gives an implausibly young age for the Local Bubble (\la 6 \times 10^5 yr).Comment: Accepted for publication in the Astrophysical Journal. 16 pages, 9 figure

    The Deuterium, Oxygen, and Nitrogen Abundance Toward LSE 44

    Full text link
    We present measurements of the column densities of interstellar DI, OI, NI, and H2 made with FUSE, and of HI made with IUE toward the sdO star LSE 44, at a distance of 554+/-66 pc. This target is among the seven most distant Galactic sight lines for which these abundance ratios have been measured. The column densities were estimated by profile fitting and curve of growth analyses. We find D/H = (2.24 +1.39 -1.32)E-5, D/O = (1.99 +1.30 -0.67)E-2, D/N = (2.75 +1.19 -0.89)E-1, and O/H = (1.13 +0.96 -0.71)E-3 (2 sigma). Of the most distant Galactic sight lines for which the deuterium abundance has been measured LSE 44 is one of the few with D/H higher than the Local Bubble value, but D/O toward all these targets is below the Local Bubble value and more uniform than the D/H distribution. (Abstract abridged.)Comment: 20 pages, including 9 figures. Accepted for publication in Ap

    The Millennium Arecibo 21-CM Absorption Line Survey. II. Properties of the Warm and Cold Neutral Media

    Get PDF
    We use the Gaussian-fit results of Paper I to investigate the properties of interstellar HI in the Solar neighborhood. The Warm and Cold Neutral Media (WNM and CNM) are physically distinct components. The CNM spin temperature histogram peaks at about 40 K. About 60% of all HI is WNM. At z=0, we derive a volume filling fraction of about 0.50 for the WNM; this value is very rough. The upper-limit WNM temperatures determined from line width range upward from about 500 K; a minimum of about 48% of the WNM lies in the thermally unstable region 500 to 5000 K. The WNM is a prominent constituent of the interstellar medium and its properties depend on many factors, requiring global models that include all relevant energy sources, of which there are many. We use Principal Components Analysis, together with a form of least squares fitting that accounts for errors in both the independent and dependent parameters, to discuss the relationships among the four CNM Gaussian parameters. The spin temperature T_s and column density N(HI) are, approximately, the two most important eigenvectors; as such, they are sufficient, convenient, and physically meaningful primary parameters for describing CNM clouds. The Mach number of internal macroscopic motions for CNM clouds is typically 2.5, but there are wide variations. We discuss the historical tau-T_s relationship in some detail and show that it has little physical meaning. We discuss CNM morphology using the CNM pressure known from UV stellar absorption lines. Knowing the pressure allows us to show that CNM structures cannot be isotropic but instead are sheetlike, with length-to-thickness aspect ratios ranging up to about 280. We present large-scale maps of two regions where CNM lies in very large ``blobby sheets''.Comment: Revised submission to Ap.J. Changes include: (1) correction of turbulent Mach number in equation 16 and figure 12; the new typical value is 1.3 versus the old, incorrect value 2.5. (2) smaller typeface for the astro-ph version to conserve paper. 60 pages, 16 figure

    Evidence Against the Sciama Model of Radiative Decay of Massive Neutrinos

    Get PDF
    We report on spectral observations of the night sky in the band around 900 angstroms where the emission line in the Sciama model of radiatively decaying massive neutrinos would be present. The data were obtained with a high resolution, high sensitivity spectrometer flown on the Spanish MINISAT satellite. The observed emission is far less intense than that expected in the Sciama model.Comment: 9 pages, accepted to Ap

    The D/H Ratio in the Interstellar Medium toward the White Dwarf PG0038+199

    Full text link
    We determine the D/H ratio in the interstellar medium toward the DO white dwarf PG0038+199 using spectra from the Far Ultraviolet Spectroscopic Explorer (FUSE), with ground-based support from Keck HIRES. We employ curve of growth, apparent optical depth and profile fitting techniques to measure column densities and limits of many other species (H2, NaI, CI, CII, CIII, NI, NII, OI, SiII, PII, SIII, ArI and FeII) which allow us to determine related ratios such as D/O, D/N and the H2 fraction. Our efforts are concentrated on measuring gas-phase D/H, which is key to understanding Galactic chemical evolution and comparing it to predictions from Big Bang nucleosynthesis. We find column densities log N(HI) = 20.41+-0.08, log N(DI)=15.75+-0.08 and log N(H2) = 19.33+-0.04, yielding a molecular hydrogen fraction of 0.14+-0.02 (2 sigma errors), with an excitation temperature of 143+-5K. The high HI column density implies that PG0038+199 lies outside of the Local Bubble; we estimate its distance to be 297 (+164,-104)pc (1 sigma). D/[HI+2H2] toward PG0038+199 is 1.91(+0.52,-0.42) e-5 (2 sigma). There is no evidence of component structure on the scale of Delta v > 8 km/s based on NaI, but there is marginal evidence for structure on smaller scales. The D/H value is high compared to the majority of recent D/H measurements, but consistent with the values for two other measurements at similar distances. D/O is in agreement with other distant measurements. The scatter in D/H values beyond ~100pc remains a challenge for Galactic chemical evolution.Comment: 59 pages, 7 tables, 18 figures (1 standalone), accepted by ApJ v2 minor typos correcte

    The accretion-diffusion scenario for metals in cool white dwarfs

    Full text link
    We calculated diffusion timescales for Ca, Mg, Fe in hydrogen atmosphere white dwarfs with temperatures between 5000 and 25000 K. With these timescales we determined accretion rates for a sample of 38 DAZ white dwarfs from the recent studies of Zuckerman et al. (2003) and Koester et al. (2005). Assuming that the accretion rates can be calculated with the Bondi-Hoyle formula for hydrodynamic accretion, we obtained estimates for the interstellar matter density around the accreting objects. These densities are in good agreement with new data about the warm, partially ionized phase of the ISM in the solar neighborhood.Comment: To be published in A&
    • 

    corecore