190 research outputs found

    Monitoring of MMCs grinding process by means of IR thermography

    Get PDF
    Abstract The objective of this investigation is to assess the IR thermography as a monitoring system able to detect the grinding conditions in order to test its use as an industrial tool for optimizing and control the process. To this aim an experimental investigation has been carried out in the grinding of Metal Matrix Composites (MMCs). These materials exhibit additional drawbacks with respect to conventional materials due to the abrasive nature of the reinforcement together with the softness of the matrix. The results show how the IR thermography can give a significant contribution in the definition of a strategy to control the grinding process as well as for the maintenance of the grinding machine

    Infrared exploration of the architectural heritage: from passive infrared thermography to <em>hybrid</em> infrared thermography (HIRT) approach

    Get PDF
    Hasta la fecha, los enfoques sobre la termografía infrarroja han sido considerados, o pasivos, o activos. En este último caso, el flujo de calor se obtiene a través de una fuente de calor no natural. El uso de energía solar ha sido recientemente incorporado al enfoque activo gracias a los estudios multitemporales. En este trabajo, se ilustra un enfoque innovador de la termografía híbrida (HIRT). Se combina tanto el componente de tiempo y la fuente de energía solar para recuperar la información cuantitativa así como la profundidad del defecto. Las imágenes térmicas se obtuvieron mediante el análisis de la fachada de la Iglesia de Santa María Collemaggio (L'Aquila, Italia), mientras que los resultados cuantitativos inherentes a las discontinuidades sub-superficiales se obtuvieron gracias al uso de otras técnicas avanzadas. Los resultados experimentales vinculados al enfoque pasivo (es decir, el proceso de mosaico de las imágenes térmicas) derivan de un conjunto de Iglesias antiguas, también incluidas en el estudio, a fin de explicar cuándo y dónde tiene sentido realizar un proceso híbrido

    Thermographic non-destructive evaluation for natural fiber-reinforced composite laminates

    Get PDF
    Natural fibers, including mineral and plant fibers, are increasingly used for polymer composite materials due to their low environmental impact. In this paper, thermographic non-destructive inspection techniques were used to evaluate and characterize basalt, jute/hemp and bagasse fibers composite panels. Different defects were analyzed in terms of impact damage, delaminations and resin abnormalities. Of particular interest, homogeneous particleboards of sugarcane bagasse, a new plant fiber material, were studied. Pulsed phase thermography and principal component thermography were used as the post-processing methods. In addition, ultrasonic C-scan and continuous wave terahertz imaging were also carried out on the mineral fiber laminates for comparative purposes. Finally, an analytical comparison of different methods was give

    The Combination of Advanced Tools for Parameters Investigation and Tools Maintenance in Flow Forming Process

    Get PDF
    Abstract In this work, the authors present an investigation on technological parameters affecting the flow forming process of aluminum alloy 6060 tubular structures and to discuss about the tools maintenance. Flow forming tests were carried out by mounting a single roller on a lathe machine. A 3D thermo-mechanical finite element model was developed to analyze the interaction between the roller and the workpiece in terms of forces, strains and thermal distribution. The effects of friction conditions were investigated through the FE model results and comparing them with acquired thermal maps. The model was validated by comparing the geometrical characteristics of the workpieces, such as the axial elongation, the inner and outer tube diameter. Aluminum spring-back was taken into account with material model adopted in the numerical algorithm. Once collected a complete information on the process parameters, some thermal images were acquired on roller in order to find a parameters set able to reduce the stresses acting on it as far as to obtain the maximum elongation with the minimum number of passes

    Thermographic Imaging in Cultural Heritage: A Short Review

    Get PDF
    Over the recent period, there has been an increasing interest in the use of pulsed infrared thermography (PT) for the non-destructive evaluation of Cultural Heritage (CH). Unlike other techniques that are commonly employed in the same field, PT enables the depth-resolved detection of different kinds of subsurface features, thus providing helpful information for both scholars and restorers. Due to this reason, several research activities are currently underway to further improve the PT effectiveness. In this manuscript, the specific use of PT for the analysis of three different types of CH, namely documentary materials, panel paintings–marquetery, and mosaics, will be reviewed. In the latter case, i.e., mosaics, passive thermography combined with ground penetrating radar (GPR) and digital microscopy (DM) have also been deepened, considering their suitability in the open field. Such items have been selected because they are characterized by quite distinct physical and structural properties and, therefore, different PT (and, in some cases, verification) approaches have been employed for their investigations

    Monitoring of jute/hemp fiber hybrid laminates by nondestructive testing techniques

    Get PDF
    Abstract Damage following static indentation of jute/hemp (50 wt.% total fiber content) hybrid laminates was detected by a number of nondestructive testing (NDT) techniques, in particular, near (NIR) and short-wave (SWIR) infrared reflectography and transmittography, infrared thermography (IRT), digital speckle photography (DSP), and holographic interferometry (HI), to discover and evaluate real defects in a laminate with a complex structure. A comparative study between thermographic data acquired in the mid- (MWIR) and long-wave infrared (LWIR) spectrum bands, by pulsed (PT) and square pulse (SPT) thermography, is reported and analyzed. A thermal simulation by COMSOL® Multiphysics (COMSOL Inc., Burlington, MA, USA) to validate the heating provided is also added. The robust SOBI (SOBI-RO) algorithm, available into the ICALAB Toolbox (BSI RIKEN ABSP Lab, Hirosawa, Japan) and operating in the MATLAB® (The MathWorks, Inc., Natick, MA, USA) environment, was applied on SPT data with results comparable to the ones acquired by several thermographic techniques. Finally, segmentation operators were applied both to the NIR/SWIR transmittography images and to a characteristic principal component thermography (PCT) image (EOFs) to visualize damage in the area surrounding indentation

    The energy efficiency challenge for a historical building undergone to seismic and energy refurbishment

    Get PDF
    Abstract The renovation of historical buildings assumes a crucial role in the renovation processes of a historical city, and it is important to foresee appropriate interventions. A case study in L'Aquila city center is proposed in this work. The building, belonging to listed buildings for its historical value, being built in the 1930s, underwent to seismic and energy refurbishment, since it was damaged by the earthquake of 2009. The solution proposed aimed at improving the energy efficiency of the structure, by using an additional insulating layer, made of natural material (i.e. hemp), on the inside of the wall. The ceilings of the unheated spaces have been insulated, too, by using pure cellulose flocks. Moreover, an endothermic membrane has been employed on the external walls of the building. Analyses on the envelope were carried out by using thermographic inspections, performed both in summer and in winter seasons, and by measuring the total thermal transmittance of the wall assembly before and after the refurbishment with the help of a heat flow meter

    Thermography data fusion and non-negative matrix factorization for the evaluation of cultural heritage objects and buildings

    Get PDF
    The application of the thermal and infrared technology in different areas of research is considerably increasing. These applications involve nondestructive testing, medical analysis (computer aid diagnosis/detection—CAD), and arts and archeology, among many others. In the arts and archeology field, infrared technology provides significant contributions in terms of finding defects of possible impaired regions. This has been done through a wide range of different thermographic experiments and infrared methods. The proposed approach here focuses on application of some known factor analysis methods such as standard nonnegative matrix factorization (NMF) optimized by gradient-descent-based multiplicative rules (SNMF1) and standard NMF optimized by nonnegative least squares active-set algorithm (SNMF2) and eigen-decomposition approaches such as principal component analysis (PCA) in thermography, and candid covariance-free incremental principal component analysis in thermography to obtain the thermal features. On the one hand, these methods are usually applied as preprocessing before clustering for the purpose of segmentation of possible defects. On the other hand, a wavelet-based data fusion combines the data of each method with PCA to increase the accuracy of the algorithm. The quantitative assessment of these approaches indicates considerable segmentation along with the reasonable computational complexity. It shows the promising performance and demonstrated a confirmation for the outlined properties. In particular, a polychromatic wooden statue, a fresco, a painting on canvas, and a building were analyzed using the above-mentioned methods, and the accuracy of defect (or targeted) region segmentation up to 71.98%, 57.10%, 49.27%, and 68.53% was obtained, respectively

    Evaluating the freeze–thaw phenomenon in sandwich-structured composites via numerical simulations and infrared thermography

    Get PDF
    The water ingress phenomenon in sandwich-structured composites used in the aerospace/aeronautical sector is a current issue. This type of defect can cause in the course of time several other defects at the boundary, such as corrosions, deformations, detachments. In fact, water may change its state of physical matter going towards the freeze–thaw cycle caused by the atmosphere re-entry of, e.g. space probes. In this work, the alveoli of a composite laminate have been filled with water, which was initially transformed into ice. By taking into account, the known quantity of water, the freeze–thaw cycle was simulated by Comsol Multiphysics® software, reproducing exactly the shape of the sandwich as well as the real conditions in which it was subsequently subjected in a climatic chamber. The experimental part consisted of monitoring the front side of the specimen by means of a thermal camera operating into the long-wave infrared spectrum, and by setting both the temperature and the relative humidity of the test chamber according to the values imposed during the numerical simulation step. It was found that the numerical and experimental temperature trends are in good agreement with each other since the model was built by following a physico-chemical point-of-view. It was also seen that the application of the independent component thermography (ICT) technique was able both to retrieve the positions of the defects (i.e. the water inclusions) and to characterize the defects in which a detachment (fabricated between the fibres and the resin) is present; the latter was realized above an inclusion caused by the water ingress. To the best of our knowledge, this is the first time that ICT is applied to satisfy this purpose.Postprint (author's final draft

    Santa Maria di Collemaggio Church (L’Aquila, Italy) : historical reconstruction by non-destructive testing techniques

    Get PDF
    The main goal of this work was the non-destructive testing (NDT) of an ancient fresco (15th century) preserved in the Santa Maria di Collemaggio Church (L’Aquila, Italy) and damaged after the 2009 earthquake. Active infrared thermography (IRT), near-infrared (NIR) reflectography and ultraviolet imaging (UV) were used. In addition, the state of the fresco prior to the earthquake was analyzed by electronic speckle pattern interferometry (ESPI), digital speckle correlation (DSC), raking light, tap, and chemical NDT techniques. The use of these techniques was important for the monitoring of new damages and for a comparison between the results over the years. Square heating thermography (SHT) data were processed using principal component thermography (PCT) and pulsed phase thermography (PPT) algorithms, in order to improve the defects’ signature and to reduce the impact of non-uniform heating and emissivity variations due to the painting’s pigments. A multi-analysis approach, segmentation operators and a specific data correlation method emphasize the overall study of the fresco. Furthermore, the facade and the high altar area were inspected by passive thermography and ground-penetrating radar (GPR), respectively. In the present case, the combined use of NDT techniques was useful to fill in the gaps in the construction history of the building
    • …
    corecore