12 research outputs found

    Techno-economic feasibility analysis of an extreme heat flux micro-cooler

    No full text
    Summary: An estimated 70% of the electricity in the United States currently passes through power conversion electronics, and this percentage is projected to increase eventually to up to 100%. At a global scale, wide adoption of highly efficient power electronics technologies is thus anticipated to have a major impact on worldwide energy consumption. As described in this perspective, for power conversion, outstanding thermal management for semiconductor devices is one key to unlocking this potentially massive energy savings. Integrated microscale cooling has been positively identified for such thermal management of future high-heat-flux, i.e., 1 kW/cm2, wide-bandgap (WBG) semiconductor devices. In this work, we connect this advanced cooling approach to the energy impact of using WBG devices and further present a techno-economic analysis to clarify the projected status of performance, manufacturing approaches, fabrication costs, and remaining barriers to the adoption of such cooling technology

    The Axolotl Limb Regeneration Model as a Discovery Tool for Engineering the Stem Cell Niche

    No full text
    Purpose of reviewRecent advances in genomics and gene editing have expanded the range of model organisms to include those with interesting biological capabilities such as regeneration. Among these are the classic models of regeneration biology, the salamander. Although stimulating endogenous regeneration in humans likely is many years away, with advances in stem cell biology and biomedical engineering (e.g. bio-inspired materials), it is evident that there is great potential to enhance regenerative outcomes by approaching the problem from an engineering perspective. The question at this point is what do we need to engineer?Recent findingsThe value of regeneration models is that they show us how regeneration works, which then can guide efforts to mimic these developmental processes therapeutically. Among these models, the Accessory Limb Model (ALM) was developed in the axolotl as a gain-of-function assay for the sequential steps that are required for successful regeneration. To date, this model has identified a number of proregenerative signals, including growth factor signaling associated with nerves, and signals associated with the extracellular matrix (ECM) that induce pattern formation.SummaryIdentification of these signals through the use of models in highly regenerative vertebrates (e.g. the axolotl) offers a wide range of possible modifications for engineering bio-inspired, biomimetic materials to create a dynamic stem cell niche for regeneration and scar-free repair
    corecore