1,607 research outputs found

    A statistical model analysis of K/πK/\pi fluctuations in heavy ion collisions

    Get PDF
    We briefly describe two statistical hadronization models, based respectively on the presence and absence of light quark chemical equilibrium, used to analyze particle yields in heavy ion collisions. We then try to distinguish between these models using K/πK/\pi fluctuations data. We find that while the non-equilibrium model provides an acceptable description of fluctuations at top SPS and RHIC energies, both models considerably under-estimate fluctuations at low SPS energies.Comment: References updated Poster in QM2006 conference, Shangha

    Hadron Resonances and Phase Threshold in Heavy Ion Collisions

    Get PDF
    We show that a measurement of the reaction energy dependence of relative hadron resonance yields in heavy ion collisions can be used to study the phase structure of the dense QCD matter created in these collisions, and investigate the origin of the trends observed in the excitation functions of certain soft hadronic observables. We show that presence of chemical nonequilibrium in light quark abundance imparts a characteristic signature on the energy dependence of resonance yields, that differs considerably from what is expected in the equilibrium picture.Comment: In press, Phys. Rev.

    Hanbury-Brown--Twiss Analysis in a Solvable Model

    Full text link
    The analysis of meson correlations by Hanbury-Brown--Twiss interferometry is tested with a simple model of meson production by resonance decay. We derive conditions which should be satisfied in order to relate the measured momentum correlation to the classical source size. The Bose correlation effects are apparent in both the ratio of meson pairs to singles and in the ratio of like to unlike pairs. With our parameter values, we find that the single particle distribution is too distorted by the correlation to allow a straightforward analysis using pair correlation normalized by the singles rates. An analysis comparing symmetrized to unsymmetrized pairs is more robust, but nonclassical off-shell effects are important at realistic temperatures.Comment: 21 pages + 9 figures (tarred etc. using uufiles, submitted separately), REVTeX 3.0, preprint number: DOE/ER/40561-112/INT93-00-3

    Indications for a Detonating Quark-Gluon Plasma

    Full text link
    We propose a mechanism which naturally contains the relation μB=3μS\mu_{B} = 3\mu_{S} of the hadronic gas produced in heavy-ion collisions at CERN. Our starting assumption is the existence of a sharp front separating the quark-gluon plasma phase from the hadronic phase. Energy-momentum conservation across the front leads to the following consequences for an adiabatic process a) The baryon chemical potential, μB\mu_{B}, is approximately continuous across the front. b) The temperature in the hadronic gas is higher than the phase transition temperature due to superheating. c) In the region covered by the experiments the velocity of the hadronic gas approximately equals the speed of sound in the hadronic gas.Comment: Latex file 9 pages + 6 figures available as postscript file

    Boundary and Coulomb Effects on Boson Systems in High-Energy Heavy-Ion Collisions

    Full text link
    The boundary of a boson system plays an important role in determining the momentum distribution of the bosons. For a boson system with a cylindrical boundary, the momentum distribution is enhanced at high transverse momenta but suppressed at low transverse momenta, relative to a Bose-Einstein distribution. The boundary effects on systems of massless gluons and massive pions are studied. For gluons in a quark-gluon plasma, the presence of the boundary may modify the signals for the quark-gluon plasma. For pions in a pion system in heavy-ion collisions, Coulomb final-state interactions with the nuclear participants in the vicinity of the central rapidity region further modify the momentum distribution at low transverse momenta. By including both the boundary effect and the Coulomb final-state interactions we are able to account for the behavior of the π\pi^{-} transverse momentum spectrum observed in many heavy-ion experiments, notably at low transverse momenta.Comment: 15 pages Postscript uuencoded tar-comprssed file, 9 Postscript figures uuencoded tar-compressed fil

    Search for the QCD critical point in nuclear collisions at the CERN SPS

    Get PDF
    Pion production in nuclear collisions at the SPS is investigated with the aim to search, in a restricted domain of the phase diagram, for power-laws in the behavior of correlations which are compatible with critical QCD. We have analyzed interactions of nuclei of different size (p+p, C+C, Si+Si, Pb+Pb) at 158AA GeV adopting, as appropriate observables, scaled factorial moments in a search for intermittent fluctuations in transverse dimensions. The analysis is performed for π+π\pi^+\pi^- pairs with invariant mass very close to the two-pion threshold. In this sector one may capture critical fluctuations of the sigma component in a hadronic medium, even if the σ\sigma-meson has no well defined vacuum state. It turns out that for the Pb+Pb system the proposed analysis technique cannot be applied without entering the invariant mass region with strong Coulomb correlations. As a result the treatment becomes inconclusive in this case. Our results for the other systems indicate the presence of power-law fluctuations in the freeze-out state of Si+Si approaching in size the prediction of critical QCD.Comment: 31 pages, 11 figure

    Source Dimensions in Ultrarelativistic Heavy Ion Collisions

    Get PDF
    Recent experiments on pion correlations, interpreted as interferometric measurements of the collision zone, are compared with models that distinguish a prehadronic phase and a hadronic phase. The models include prehadronic longitudinal expansion, conversion to hadrons in local kinetic equilibrium, and rescattering of the produced hadrons. We find that the longitudinal and outward radii are surprisingly sensitive to the algorithm used for two-body collisions. The longitudinal radius measured in collisions of 200 GeV/u sulfur nuclei on a heavy target requires the existence of a prehadronic phase which converts to the hadronic phase at densities around 0.8-1.0 GeV/fm3^3. The transverse radii cannot be reproduced without introducing more complex dynamics into the transverse expansion.Comment: RevTeX 3.0, 28 pages, 6 figures, not included, revised version, major change is an additional discussion of the classical two-body collision algorithm, a (compressed) postscript file of the complete paper including figures can be obtained from Authors or via anonymous ftp at ftp://ftp_int.phys.washington.edu/pub/herrmann/pisource.ps.

    Charged Particle Production in Proton-, Deuteron-, Oxygen- and Sulphur-Nucleus Collisions at 200 GeV per Nucleon

    Get PDF
    The transverse momentum and rapidity distributions of net protons and negatively charged hadrons have been measured for minimum bias proton-nucleus and deuteron-gold interactions, as well as central oxygen-gold and sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net protons at midrapidity in central nucleus-nucleus collisions increases both with target mass for sulphur projectiles and with the projectile mass for a gold target. The shape of the rapidity distributions of net protons forward of midrapidity for d+Au and central S+Au collisions is similar. The average rapidity loss is larger than 2 units of rapidity for reactions with the gold target. The transverse momentum spectra of net protons for all reactions can be described by a thermal distribution with `temperatures' between 145 +- 11 MeV (p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The multiplicity of negatively charged hadrons increases with the mass of the colliding system. The shape of the transverse momentum spectra of negatively charged hadrons changes from minimum bias p+p and p+S interactions to p+Au and central nucleus-nucleus collisions. The mean transverse momentum is almost constant in the vicinity of midrapidity and shows little variation with the target and projectile masses. The average number of produced negatively charged hadrons per participant baryon increases slightly from p+p, p+A to central S+S,Ag collisions.Comment: 47 pages, submitted to Z. Phys.

    Phase-space dependence of particle-ratio fluctuations in Pb+Pb collisions from 20A to 158A GeV beam energy

    Full text link
    A novel approach, the identity method, was used for particle identification and the study of fluctuations of particle yield ratios in Pb+Pb collisions at the CERN Super Proton Synchrotron (SPS). This procedure allows to unfold the moments of the unknown multiplicity distributions of protons (p), kaons (K), pions (π\pi) and electrons (e). Using these moments the excitation function of the fluctuation measure νdyn\nu_{\text{\text{dyn}}}[A,B] was measured, with A and B denoting different particle types. The obtained energy dependence of νdyn\nu_{\text{dyn}} agrees with previously published NA49 results on the related measure σdyn\sigma_{\text{dyn}}. Moreover, νdyn\nu_{\text{dyn}} was found to depend on the phase space coverage for [K,p] and [K,π\pi] pairs. This feature most likely explains the reported differences between measurements of NA49 and those of STAR in central Au+Au collisions
    corecore