7 research outputs found

    Extracellular Vesicles in Periodontal Medicine : The Candidates Linking Oral Health to General Health

    Get PDF
    The term, periodontal medicine is used to describe the multitude of systemic diseases which are regarded to link periodontal disease. The concept of periodontal medicine has been widely accepted today, however, the molecular mechanisms which periodontal diseases impact general health in whole body are not elucidated in detail. Extracellular vesicles (EVs) and outer membrane vesicles (OMVs) are the nano-sized particles released from mammalian cells and bacterial cells resectively, which influence the health and various disease by transporting biological factors to the neighbor and distant cells. In this review, we will discuss whether EVs and OMVs produced in periodontal diseases could be implicated in periodontal medicine

    Case report: A case of fetal umbilical vein varix presenting disseminated intravascular coagulation, polycythemia, and neonatal hepatitis in an extremely low birth weight infant

    Get PDF
    Reports on the clinical course of fetal umbilical vein varix in premature infants are limited. We report a case of an extremely low body weight infant with intra-abdominal umbilical vein varix who developed disseminated intravascular coagulation, polycythemia, and hyperbilirubinemia after birth; late-onset neonatal hepatitis; and fetal thrombotic vasculopathy confirmed by placental histopathology. Ultrasonography after birth showed a dilated portion of the umbilical vein at the hepatic hilum with thrombi inside. We speculate that the umbilical vein varix caused the fetal thrombotic vasculopathy, and the presence of umbilical vein varix and fetal thrombotic vasculopathy in combination with prematurity caused coagulopathy, polycythemia, hyperbilirubinemia, and hepatitis. Despite the favorable outcomes reported in the literature, premature infants with umbilical vein varix may require careful observation and management for coagulopathy and late-onset hepatitis. Furthermore, placental histopathology could aid in the understanding of various clinical outcomes in infants with umbilical vein varices

    P. gingivalis OMVs induce neuroinflammation

    No full text
    Objective: Porphyromonas gingivalis (Pg) is thought to be involved in the progression of Alzheimer's disease (AD). Whether Pg or its contents can reach the brain and directly affect neuropathology is, however, unknown. Here, we investigated whether outer membrane vesicles (OMVs) of Pg translocate to the brain and induce the pathogenic features of AD. Material and Methods: Pg OMVs were injected into the abdominal cavity of mice for 12 weeks. Pg OMV translocation to the brain was detected by immunohistochemistry using an anti-gingipain antibody. Tau protein and microglial activation in the mouse brain were examined by western blotting and immunohistochemistry. The effect of gingipains on inflammation was assessed by real-time polymerase chain reaction using human microglial HMC3 cells. Results: Gingipains were detected in the region around cerebral ventricles, choroid plexus, and ventricular ependymal cells in Pg OMV-administered mice. Tau and phosphorylated Tau protein increased and microglia were activated. Pg OMVs also increased the gene expression of proinflammatory cytokines in HMC3 cells in a gingipain-dependent manner. Conclusion: Pg OMVs, including gingipains, can reach the cerebral ventricle and induce neuroinflammation by activating microglia. Pg OMVs may provide a better understanding of the implications of periodontal diseases in neurodegenerative conditions such as AD

    Porphyromonas gingivalis outer membrane vesicles in cerebral ventricles activate microglia in mice

    No full text
    Objective: Porphyromonas gingivalis (Pg) is thought to be involved in the progression of Alzheimer's disease (AD). Whether Pg or its contents can reach the brain and directly affect neuropathology is, however, unknown. Here, we investigated whether outer membrane vesicles (OMVs) of Pg translocate to the brain and induce the pathogenic features of AD. Material and Methods: Pg OMVs were injected into the abdominal cavity of mice for 12 weeks. Pg OMV translocation to the brain was detected by immunohistochemistry using an anti-gingipain antibody. Tau protein and microglial activation in the mouse brain were examined by western blotting and immunohistochemistry. The effect of gingipains on inflammation was assessed by real-time polymerase chain reaction using human microglial HMC3 cells. Results: Gingipains were detected in the region around cerebral ventricles, choroid plexus, and ventricular ependymal cells in Pg OMV-administered mice. Tau and phosphorylated Tau protein increased and microglia were activated. Pg OMVs also increased the gene expression of proinflammatory cytokines in HMC3 cells in a gingipain-dependent manner. Conclusion: Pg OMVs, including gingipains, can reach the cerebral ventricle and induce neuroinflammation by activating microglia. Pg OMVs may provide a better understanding of the implications of periodontal diseases in neurodegenerative conditions such as AD

    Extracellular vesicles of P. gingivalis-infected macrophages induce lung injury

    No full text
    Periodontal diseases are common inflammatory diseases that are induced by infection with periodontal bacteria such as Porphyromonas gingivalis (Pg). The association between periodontal diseases and many types of systemic diseases has been demonstrated; the term “periodontal medicine” is used to describe how periodontal infection/inflammation may impact extraoral health. However, the molecular mechanisms by which the factors produced in the oral cavity reach multiple distant organs and impact general health have not been elucidated. Extracellular vesicles (EVs) are nano-sized spherical structures secreted by various types of cells into the tissue microenvironment, and influence pathophysiological conditions by delivering their cargo. However, a detailed understanding of the effect of EVs on periodontal medicine is lacking. In this study, we investigated whether EVs derived from Pg-infected macrophages reach distant organs in mice and influence the pathophysiological status. EVs were isolated from human macrophages, THP-1 cells, infected with Pg. We observed that EVs from Pg-infected THP-1 cells (Pg-inf EVs) contained abundant core histone proteins such as histone H3 and translocated to the lungs, liver, and kidneys of mice. Pg-inf EVs also induced pulmonary injury, including edema, vascular congestion, inflammation, and collagen deposition causing alveoli destruction. The Pg-inf EVs or the recombinant histone H3 activated the NF-κB pathway, leading to increase in the levels of pro-inflammatory cytokines in human lung epithelial A549 cells. Our results suggest a possible mechanism by which EVs produced in periodontal diseases contribute to the progression of periodontal medicine
    corecore