1,761 research outputs found

    A Comment on the Geometric Entropy and Conical Space

    Full text link
    It has been recently pointed out that a definition of the geometric entropy using the partition function in a conical space does not in general lead to a positive definite quantity. For a scalar field model with a non-minimal coupling we clarify the origin of the anomalous behavior from the viewpoint of the canonical formulation.Comment: No Figures. To appear in Classical and Quantum Gravit

    A microscopic model for Josephson currents

    Full text link
    A microscopic model of a Josephson junction between two superconducting plates is proposed and analysed. For this model, the nonequilibrium steady state of the total system is explicitly constructed and its properties are analysed. In particular, the Josephson current is rigorously computed as a function of the phase difference of the two plates and the typical properties of the Josephson current are recovered

    A Bisognano-Wichmann-like Theorem in a Certain Case of a Non Bifurcate Event Horizon related to an Extreme Reissner-Nordstr\"om Black Hole

    Full text link
    Thermal Wightman functions of a massless scalar field are studied within the framework of a ``near horizon'' static background model of an extremal R-N black hole. This model is built up by using global Carter-like coordinates over an infinite set of Bertotti-Robinson submanifolds glued together. The analytical extendibility beyond the horizon is imposed as constraints on (thermal) Wightman's functions defined on a Bertotti-Robinson sub manifold. It turns out that only the Bertotti-Robinson vacuum state, i.e. T=0T=0, satisfies the above requirement. Furthermore the extension of this state onto the whole manifold is proved to coincide exactly with the vacuum state in the global Carter-like coordinates. Hence a theorem similar to Bisognano-Wichmann theorem for the Minkowski space-time in terms of Wightman functions holds with vanishing ``Unruh-Rindler temperature''. Furtermore, the Carter-like vacuum restricted to a Bertotti-Robinson region, resulting a pure state there, has vanishing entropy despite of the presence of event horizons. Some comments on the real extreme R-N black hole are given

    The Measurement Process in Local Quantum Theory and the EPR Paradox

    Full text link
    We describe in a qualitative way a possible picture of the Measurement Process in Quantum Mechanics, which takes into account: 1. the finite and non zero time duration T of the interaction between the observed system and the microscopic part of the measurement apparatus; 2. the finite space size R of that apparatus; 3. the fact that the macroscopic part of the measurement apparatus, having the role of amplifying the effect of that interaction to a macroscopic scale, is composed by a very large but finite number N of particles. The conventional picture of the measurement, as an instantaneous action turning a pure state into a mixture, arises only in the limit in which N and R tend to infinity, and T tends to 0. We sketch here a proposed scheme, which still ought to be made mathematically precise in order to analyse its implications and to test it in specific models, where we argue that in Quantum Field Theory this picture should apply to the unique time evolution expressing the dynamics of a given theory, and should comply with the Principle of Locality. We comment on the Einstein Podolski Rosen thought experiment (partly modifying the discussion on this point in an earlier version of this note), reformulated here only in terms of local observables (rather than global ones, as one particle or polarisation observables). The local picture of the measurement process helps to make it clear that there is no conflict with the Principle of Locality.Comment: 18 page

    Fluctuation-dissipation theorem and the Unruh effect of scalar and Dirac fields

    Get PDF
    We present a simple and systematic method to calculate the Rindler noise, which is relevant to the analysis of the Unruh effect, by using the fluctuation-dissipative theorem. To do this, we calculate the dissipative coefficient explicitly from the equations of motion of the detector and the field. This method gives not only the correct answer but also a hint as to the origin of the apparent statistics inversion effect. Moreover, this method is generalized to the Dirac field, by using the fermionic fluctuation-dissipation theorem. We can thus confirm that the fermionic fluctuation-dissipation theorem is working properly.Comment: 26 page

    Gopi: compiling linear and static channels in go

    Get PDF
    PTDC/CCI-COM/32166/2017We identify two important features to enhance the design of communication protocols specified in the pi-calculus, that are linear and static channels, and present a compiler, named GoPi, that maps high level specifications into executable Go programs. Channels declared as linear are deadlock-free, while the scope of static channels, which are bound by a hide declaration, does not enlarge at runtime; this is enforced statically by means of type inference, while specifications do not include annotations. Well-behaved processes are transformed into Go code that supports non-deterministic synchronizations and race-freedom. We sketch two main examples involving protection against message forwarding, and forward secrecy, and discuss the features of the tool, and the generated code. We argue that GoPi can support academic activities involving process algebras and formal models, which range from the analysis and testing of concurrent processes for research purposes to teaching formal languages and concurrent systems.publishersversionpublishe

    Fermionic entanglement in itinerant systems

    Full text link
    We study pairwise quantum entanglement in systems of fermions itinerant in a lattice from a second-quantized perspective. Entanglement in the grand-canonical ensemble is studied, both for energy eigenstates and for the thermal state. Relations between entanglement and superconducting correlations are discussed in a BCS-like model and for η\eta-pair superconductivity.Comment: 8 Pages LaTeX, 5 Figures included. Presentation improved, results and references adde

    The Quest for Understanding in Relativistic Quantum Physics

    Full text link
    We discuss the status and some perspectives of relativistic quantum physics.Comment: Invited contribution to the Special Issue 2000 of the Journal of Mathematical Physics, 38 pages, typos corrected and references added, as to appear in JM

    The limits of social class in explaining ethnic gaps in educational attainment

    Get PDF
    This paper reports an analysis of the educational attainment and progress between age 11 and age 14 of over 14,500 students from the nationally representative Longitudinal Study of Young People in England (LSYPE). The mean attainment gap in national tests at age 14 between White British and several ethnic minority groups were large, more than three times the size of the gender gap, but at the same time only about one-third of the size of the social class gap. Socio-economic variables could account for the attainment gaps for Black African, Pakistani and Bangladeshi students, but not for Black Caribbean students. Further controls for parental and student attitudes, expectations and behaviours indicated minority ethnic groups were on average more advantaged on these measures than White British students, but this was not reflected proportionately in their levels of attainment. Black Caribbean students were distinctive as the only group making less progress than White British students between age 11 and 14 and this could not be accounted for by any of the measured contextual variables. Possible explanations for the White British-Black Caribbean gap are considered
    • 

    corecore