720 research outputs found
Einstein observations of extended galactic X-ray sources
Features of the X-ray pictures taken aboard the space observatory are presented. Imaging proportional counter pictures in three broad X-ray energy ranges were obtained. The X-ray spectrum of supernova remnants is described
ROSAT HRI Detection of the 16 ms Pulsar PSR J0537-6910 Inside SNR N157B
Based on a deep ROSAT HRI observation, we have detected a pulsed signal in
the 0.1-2 keV band from PSR J0537-6910 --- the recently discovered pulsar
associated with the supernova remnant N157B in the Large Magellanic Cloud. The
measured pulse period 0.01611548182 ms (+- 0.02 ns), Epoch MJD 50540.5, gives a
revised linear spin-down rate of , slightly
greater than the previously derived value. The narrow pulse shape (FWHM = 10%
duty cycle) in the ROSAT band resembles those seen in both XTE and ASCA data (>
2 keV), but there is also marginal evidence for an interpulse. This ROSAT
detection enables us to locate the pulsar at R.A., Dec (J2000) =
. With its uncertainty , this
position coincides with the centroid of a compact X-ray source. But the pulsed
emission accounts for only about 10% of the source luminosity in the 0.1-2 keV band. These results support our previous
suggestions: (1) The pulsar is moving at a high velocity ();
(2) A bow shock, formed around the pulsar, is responsible for most of the X-ray
emission from the source; (3) A collimated outflow from the bow shock region
powers a pulsar wind nebula that accounts for an elongated non-thermal radio
and X-ray feature to the northwest of the pulsar.Comment: 6 pages including 3 figures. To be published in ApJ
X-ray Survey of the Small Magellanic Cloud
A region of over 40 square degrees centered on the Small Magellanic Cloud (SMC) has been surveyed with the imaging instruments of the Einstein Observatory. The survey is approximately complete to Lx = 1036 ergs s-1, and the faintest source detected in the SMC, has Lx ≈ 3 x 1035 ergs s-1. Twenty-six sources were clearly seen. Five are identified with objects not associated with the SMC. The only previously known source detected was SMC X-1 which, when in a high state, is the brightest source in the SMC. The second brightest source observed, a previously unknown supernova remnant (SNR), is located in the central part of the SMC. Four other weaker sources are probably also SNRs in the SMC. The remaining 15 sources are not yet identified and, since some are far from the center of the cloud, are probably not all members of the SMC
X-ray Timing of PSR J1852+0040 in Kesteven 79: Evidence of Neutron Stars Weakly Magnetized at Birth
The 105-ms X-ray pulsar J1852+0040 is the central compact object (CCO) in SNR
Kes 79. We report a sensitive upper limit on its radio flux density of 12 uJy
at 2 GHz using the NRAO GBT. Timing using XMM and Chandra over a 2.4 yr span
reveals no significant change in its spin period. The 2 sigma upper limit on
the period derivative leads, in the dipole spin-down formalism, to an energy
loss rate E-dot < 7e33 ergs/s, surface magnetic field strength B_p < 1.5e11 G,
and characteristic age tau_c = P/2P-dot > 8 Myr. This tau_c exceeds the age of
the SNR by 3 orders of magnitude, implying that the pulsar was born spinning at
its current period. However, the X-ray luminosity of PSR J1852+0040, L(bol) ~
3e33(d/7.1 kpc)^2 ergs/s is a large fraction of E-dot, which challenges the
rotation-powered assumption. Instead, its high blackbody temperature,
0.46+/-0.04 keV, small blackbody radius ~ 0.8 km, and large pulsed fraction, ~
80%, may be evidence of accretion onto a polar cap, possibly from a fallback
disk made of supernova debris. If B_p < 1e10 G, an accretion disk can penetrate
the light cylinder and interact with the magnetosphere while resulting torques
on the neutron star remain within the observed limits. A weak B-field is also
inferred in another CCO, the 424-ms pulsar 1E 1207.4-5209, from its steady spin
and soft X-ray absorption lines. We propose this origin of radio-quiet CCOs:
the B-field, derived from a turbulent dynamo, is weaker if the NS is formed
spinning slowly, which enables it to accrete SN debris. Accretion excludes
neutron stars born with both B_p 0.1 s from radio pulsar
surveys, where B_p
40 Myr) or recycled pulsars. Finally, such a CCO, if born in SN 1987A, could
explain the non-detection of a pulsar there.Comment: 8 pages, 3 figures, to appear in The Astrophysical Journa
CHANDRA Observations of the X-ray Halo around the Crab Nebula
Two Chandra observations have been used to search for thermal X-ray emission
from within and around the Crab Nebula. Dead-time was minimized by excluding
the brightest part of the Nebula from the field of view. A dust-scattered halo
comprising 5% of the strength of the Crab is clearly detected with surface
brightness measured out to a radial distance of 18 arcminutes. Coverage is 100%
at 4 arcminutes, 50% at 12 arcminutes, and 25% at 18 arcminutes. The observed
halo is compared with predictions based on 3 different interstellar grain
models and one can be adjusted to fit the observation. This dust halo and
mirror scattering form a high background region which has been searched for
emission from shock-heated material in an outer shell. We find no evidence for
such emission. We can set upper limits a factor of 10-1000 less than the
surface brightness observed from outer shells around similar remnants. The
upper limit for X-ray luminosity of an outer shell is about 10e34 erg/s.
Although it is possible to reconcile our observation with an 8-13 solar mass
progenitor, we argue that this is unlikely.Comment: 26 pages, 12 figures, accepted by Ap
Recommended from our members
Interim readiness plan
This report provides rough designs and costs for 3 payloads which can be built on a relatively fast time scale. With these, Lawrence Radiation Laboratory (LRL) could measure neutrons and X-rays from high altitude shots. No measurements of soft X-rays (less than or approximately equal to 5 kev), hard X- rays (greater than or approximately equal to 60 kev), or gamma rays would be made. Plans could be made to fly the Simplex payload as part of the spring Lapwing exercise. Some interim capability exists from other sources which might compliment the above measurements. Sandia has developed a mylar sail sampler which could be used for debris experiments. There is a LASL/Sandia scan converter which could be fielded to make fast time-history measurements of the X-ray or gamma ray pulse. Interval time could be measured with a ground based EMP detector. The LRL cost of this interim rocket program is approximately 5 man years of effort and about 450,000 to stockpile payloads. I believe the necessary rockets are already stockpiled but some work on the ranges might be required. For example, more launchers are needed on Johnston Atoll. All this money and effort would be expended in FY- 1970 and these rocket experiments would be ready (`on the shelf` or close) by June 1970
ROSAT Observations of the Vela Pulsar
The ROSAT HRI was used to monitor X-ray emission from the Vela Pulsar. Six
observations span 2-1/2 years and 3 glitches. The summed data yield a
determination of the pulse shape, and X-ray emission from the pulsar is found
to be 12 % pulsed with one broad and two narrow peaks. One observation occurred
15 days after a large glitch. No change in pulse structure was observed and any
change in X-ray luminosity, if present, was less than 3 %. Implications for
neutron star structure are discussed.Comment: To be publisned in the Astrophysical Journa
Chandra Observation of the Magellanic Cloud Supernova Remnant 0454-672 in N9
A Chandra observation has defined the extent of the SNR B 0454-692 in the LMC
H II region N9. The remnant has dimension 2.3" x 3.6" and is elongated in the
NS direction. The brightest emission comes from a NS central ridge which
includes three bright patches. There is good agreement between X-ray and [O
III] and [S II] morphology. The remnant is old enough so that optical data give
more information about dynamics than do the X-ray data. The SN energy release
was >= 4 x 10^50 ergs and the age is ~3 x 10^4 years. There are several
unresolved sources nearby but none are clearly associated with the remnant. The
X-ray spectrum is soft and indicates enhanced Fe abundance in the central
region, consistent with a Type Ia SN origin, but a Type II origin cannot be
ruled out.Comment: AASTeX, 20 pages including 5 figures. Accepted for publication in The
Astrophysical Journal. Figures have been reduced in resolution for space
requirements; full-resolution figures may be requested by email to
[email protected]
An ASCA Study of the W51 Complex
We present the analysis of ASCA archival data from the Galactic source W51.
The ASCA spectra show that the soft (kT<= 2.5 keV) X-rays are of thermal origin
and are compatible with W51C being a single, isothermal (kT~0.3 keV) supernova
remnant at the far-side of the Sagittarius arm. The ASCA images reveal hard
(kT>=2.5 keV) X-ray sources which were not seen in previous X-ray observations.
Some of these sources are coincident with massive star-forming regions and the
spectra are used to derive X-ray parameters. By comparing the X-ray absorbing
column density with atomic hydrogen column density, we infer the location of
star-forming regions relative to molecular clouds. There are unidentified hard
X-ray sources superposed on the supernova remnant and we discuss the
possibility of their association.Comment: 13 pages, 11 figures, to be published in Astronomical Journa
- …