10 research outputs found

    Letter to the Editor regarding the article: "identifying pre-hospital factors associated with outcome for major trauma patients in a regional trauma network: An exploratory study"

    Get PDF
    The aim of this Letter to the Editor was to report some methodological shortcomings in a recently published article. Issues regarding missing values and overfitting are mentioned. First, Complete Case (CC) analysis was used instead of an imputation method. Second, there was a high chance of overfitting and lack of model validation. In conclusion, the results of this study should be interpret with caution and further research is necessary

    The volume-outcome relationship in severely injured patients: A systematic review and meta-analysis

    Get PDF
    BACKGROUND The volume-outcome relationship in severely injured patients remains under debate and this has consequences for the designation of trauma centers. OBJECTIVES The aim of this study was to evaluate the relationship between hospital or surgeon volume and health outcomes in severely injured patients. METHODS Six electronic databases were searched from 1980 up to January 30, 2018, to identify studies that describe the relationship between hospital or surgeon volume and health outcomes in severely injured patients (preferably Injury Severity Score above 15). Selection of relevant studies, data extraction, and critical appraisal of the methodological quality were performed by two independent reviewers. Pooled adjusted and unadjusted estimates of the effect of volume on in-hospital mortality, only in study populations with Injury Severity Score greater than 15, were calculated with a random-effects meta-analysis. A mixed effects linear regression model was used to assess hospital volume as continuous parameter. RESULTS Eighteen observational cohort studies were included. The majority (13 [72%] of 18) reported an association between higher hospital or surgeon volume and lower mortality rate. Overall, the quality of the included studies was reasonable, with insufficient adjustment as one of the most common limitations. Eight studies were included in the meta-analysis with a total of 222,418 patients. High hospital volume (>240 admitted severely injured patients per year) was associated with a lower risk of mortality (adjusted odds ratio, 0.85; 95% confidence interval, 0.76-0.94). Four studies were included in the regression model, providing a beta of-0.17 per 10 patients (95% CI,-0.27 to-0.07). There was no clear association between surgeon volume and mortality rates based on three available studies. CONCLUSION Our systematic overview of the literature reveals a modest association between high-volume centers and lower mortality in severely injured patients, suggesting that designation of high-volume centers might improve outcomes among severely injured patients

    The burden of traumatic brain injury from low-energy falls among patients from 18 countries in the CENTER-TBI Registry: A comparative cohort study.

    Get PDF
    BACKGROUND: Traumatic brain injury (TBI) is an important global public health burden, where those injured by high-energy transfer (e.g., road traffic collisions) are assumed to have more severe injury and are prioritised by emergency medical service trauma triage tools. However recent studies suggest an increasing TBI disease burden in older people injured through low-energy falls. We aimed to assess the prevalence of low-energy falls among patients presenting to hospital with TBI, and to compare their characteristics, care pathways, and outcomes to TBI caused by high-energy trauma. METHODS AND FINDINGS: We conducted a comparative cohort study utilising the CENTER-TBI (Collaborative European NeuroTrauma Effectiveness Research in TBI) Registry, which recorded patient demographics, injury, care pathway, and acute care outcome data in 56 acute trauma receiving hospitals across 18 countries (17 countries in Europe and Israel). Patients presenting with TBI and indications for computed tomography (CT) brain scan between 2014 to 2018 were purposively sampled. The main study outcomes were (i) the prevalence of low-energy falls causing TBI within the overall cohort and (ii) comparisons of TBI patients injured by low-energy falls to TBI patients injured by high-energy transfer-in terms of demographic and injury characteristics, care pathways, and hospital mortality. In total, 22,782 eligible patients were enrolled, and study outcomes were analysed for 21,681 TBI patients with known injury mechanism; 40% (95% CI 39% to 41%) (8,622/21,681) of patients with TBI were injured by low-energy falls. Compared to 13,059 patients injured by high-energy transfer (HE cohort), the those injured through low-energy falls (LE cohort) were older (LE cohort, median 74 [IQR 56 to 84] years, versus HE cohort, median 42 [IQR 25 to 60] years; p < 0.001), more often female (LE cohort, 50% [95% CI 48% to 51%], versus HE cohort, 32% [95% CI 31% to 34%]; p < 0.001), more frequently taking pre-injury anticoagulants or/and platelet aggregation inhibitors (LE cohort, 44% [95% CI 42% to 45%], versus HE cohort, 13% [95% CI 11% to 14%]; p < 0.001), and less often presenting with moderately or severely impaired conscious level (LE cohort, 7.8% [95% CI 5.6% to 9.8%], versus HE cohort, 10% [95% CI 8.7% to 12%]; p < 0.001), but had similar in-hospital mortality (LE cohort, 6.3% [95% CI 4.2% to 8.3%], versus HE cohort, 7.0% [95% CI 5.3% to 8.6%]; p = 0.83). The CT brain scan traumatic abnormality rate was 3% lower in the LE cohort (LE cohort, 29% [95% CI 27% to 31%], versus HE cohort, 32% [95% CI 31% to 34%]; p < 0.001); individuals in the LE cohort were 50% less likely to receive critical care (LE cohort, 12% [95% CI 9.5% to 13%], versus HE cohort, 24% [95% CI 23% to 26%]; p < 0.001) or emergency interventions (LE cohort, 7.5% [95% CI 5.4% to 9.5%], versus HE cohort, 13% [95% CI 12% to 15%]; p < 0.001) than patients injured by high-energy transfer. The purposive sampling strategy and censorship of patient outcomes beyond hospital discharge are the main study limitations. CONCLUSIONS: We observed that patients sustaining TBI from low-energy falls are an important component of the TBI disease burden and a distinct demographic cohort; further, our findings suggest that energy transfer may not predict intracranial injury or acute care mortality in patients with TBI presenting to hospital. This suggests that factors beyond energy transfer level may be more relevant to prehospital and emergency department TBI triage in older people. A specific focus to improve prevention and care for patients sustaining TBI from low-energy falls is required.CENTER-TBI was supported by the European Union 7th Framework program (EC grant 602150), recipient A.I.R. Maas. Additional funding was obtained from the Hannelore Kohl Stiftung (Germany) - recipient A.I.R. Maas, from OneMind (USA) - recipient A.I.R. Maas and from Integra LifeSciences Corporation (USA) - recipient A.I.R. Maas. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Tracheal intubation in traumatic brain injury

    Get PDF
    Background: We aimed to study the associations between pre- and in-hospital tracheal intubation and outcomes in traumatic brain injury (TBI), and whether the association varied according to injury severity. Methods: Data from the international prospective pan-European cohort study, Collaborative European NeuroTrauma Effectiveness Research for TBI (CENTER-TBI), were used (n=4509). For prehospital intubation, we excluded self-presenters. For in-hospital intubation, patients whose tracheas were intubated on-scene were excluded. The association between intubation and outcome was analysed with ordinal regression with adjustment for the International Mission for Prognosis and Analysis of Clinical Trials in TBI variables and extracranial injury. We assessed whether the effect of intubation varied by injury severity by testing the added value of an interaction term with likelihood ratio tests. Results: In the prehospital analysis, 890/3736 (24%) patients had their tracheas intubated at scene. In the in-hospital analysis, 460/2930 (16%) patients had their tracheas intubated in the emergency department. There was no adjusted overall effect on functional outcome of prehospital intubation (odds ratio=1.01; 95% confidence interval, 0.79–1.28; P=0.96), and the adjusted overall effect of in-hospital intubation was not significant (odds ratio=0.86; 95% confidence interval, 0.65–1.13; P=0.28). However, prehospital intubation was associated with better functional outcome in patients with higher thorax and abdominal Abbreviated Injury Scale scores (P=0.009 and P=0.02, respectively), whereas in-hospital intubation was associated with better outcome in patients with lower Glasgow Coma Scale scores (P=0.01): in-hospital intubation was associated with better functional outcome in patients with Glasgow Coma Scale scores of 10 or lower. Conclusion: The benefits and harms of tracheal intubation should be carefully evaluated in patients with TBI to optimise benefit. This study suggests that extracranial injury should influence the decision in the prehospital setting, and level of consciousness in the in-hospital setting. Clinical trial registration: NCT02210221

    Informed consent procedures in patients with an acute inability to provide informed consent

    Get PDF
    Purpose: Enrolling traumatic brain injury (TBI) patients with an inability to provide informed consent in research is challenging. Alternatives to patient consent are not sufficiently embedded in European and national legislation, which allows procedural variation and bias. We aimed to quantify variations in informed consent policy and practice. Methods: Variation was explored in the CENTER-TBI study. Policies were reported by using a questionnaire and national legislation. Data on used informed consent procedures were available for 4498 patients from 57 centres across 17 European countries. Results: Variation in the use of informed consent procedur

    Identifying trauma patients with benefit from direct transportation to Level-1 trauma centers

    No full text
    Background: Prehospital triage protocols typically try to select patients with Injury Severity Score (ISS) above 15 for direct transportation to a Level-1 trauma center. However, ISS does not necessarily discriminate between patients who benefit from immediate care at Level-1 trauma centers. The aim of this study was to assess which patients benefit from direct transportation to Level-1 trauma centers. Methods: We used the American National Trauma Data Bank (NTDB), a retrospective observational cohort. All adult patients (ISS &gt; 3) between 2015 and 2016 were included. Patients who were self-presenting or had isolated limb injury were excluded. We used logistic regression to assess the association of direct transportation to Level-1 trauma centers with in-hospital mortality adjusted for clinically relevant confounders. We used this model to define benefit as predicted probability of mortality associated with transportation to a non-Level-1 trauma center minus predicted probability associated with transportation to a Level-1 trauma center. We used a threshold of 1% as absolute benefit. Potential interaction terms with transportation to Level-1 trauma centers were included in a penalized logistic regression model to study which patients benefit. Results: We included 388,845 trauma patients from 232 Level-1 centers and 429 Level-2/3 centers. A small beneficial effect was found for direct transportation to Level-1 trauma centers (adjusted Odds Ratio: 0.96, 95% Confidence Interval: 0.92\xe2\x80\x930.99) which disappeared when comparing Level-1 and 2 versus Level-3 trauma centers. In the risk approach, predicted benefit ranged between 0 and 1%. When allowing for interactions, 7% of the patients (n = 27,753) had more than 1% absolute benefit from direct transportation to Level-1 trauma centers. These patients had higher AIS Head and Thorax scores, lower GCS and lower SBP. A quarter of the patients with ISS &gt; 15 were predicted to benefit from transportation to Level-1 centers (n = 26,522, 22%). Conclusions: Benefit of transportation to a Level-1 trauma centers is quite heterogeneous across patients and the difference between Level-1 and Level-2 trauma centers is small. In particular, patients with head injury and signs of shock may benefit from care in a Level-1 trauma center. Future prehospital triage models should incorporate more complete risk profiles.</p

    Identifying trauma patients with benefit from direct transportation to Level-1 trauma centers

    No full text
    Background: Prehospital triage protocols typically try to select patients with Injury Severity Score (ISS) above 15 for direct transportation to a Level-1 trauma center. However, ISS does not necessarily discriminate between patients who benefit from immediate care at Level-1 trauma centers. The aim of this study was to assess which patients benefit from direct transportation to Level-1 trauma centers. Methods: We used the American National Trauma Data Bank (NTDB), a retrospective observational cohort. All adult patients (ISS &gt; 3) between 2015 and 2016 were included. Patients who were self-presenting or had isol

    The association between level of trauma care and clinical outcome measures: A systematic review and meta-analysis

    No full text
    BACKGROUND With implementation of trauma systems, a level of trauma care classification was introduced. Use of such a system has been linked to significant improvements in survival and other outcomes. OBJECTIVES The aim of this study was assessing the association between level of trauma care and fatal and nonfatal outcome measures for general and major trauma (MT) populations. METHODS A systematic literature search was conducted using six electronic databases up to December 18, 2019. Studies comparing mortality or nonfatal outcomes between different levels of trauma care in general and MT populations (preferably Injury Severity Score of >15) were included. Two independent reviewers performed selection of relevant studies, data extraction, and a quality assessment of included articles. With a random-effects meta-analysis, adjusted and unadjusted pooled effect sizes were calculated for level I versus non-level I trauma centers. RESULTS Twenty-two studies were included. Quality of the included s

    The association between level of trauma care and clinical outcome measures: A systematic review and meta-analysis

    Get PDF
    BACKGROUND With implementation of trauma systems, a level of trauma care classification was introduced. Use of such a system has been linked to significant improvements in survival and other outcomes. OBJECTIVES The aim of this study was assessing the association between level of trauma care and fatal and nonfatal outcome measures for general and major trauma (MT) populations. METHODS A systematic literature search was conducted using six electronic databases up to December 18, 2019. Studies comparing mortality or nonfatal outcomes between different levels of trauma care in general and MT populations (preferably Injury Severity Score of >15) were included. Two independent reviewers performed selection of relevant studies, data extraction, and a quality assessment of included articles. With a random-effects meta-analysis, adjusted and unadjusted pooled effect sizes were calculated for level I versus non-level I trauma centers. RESULTS Twenty-two studies were included. Quality of the included studies was good; however, adjustment for comorbidity (32%) and interhospital transfer (38%) was performed less frequently. Nine (60%) of the 15 studies analyzing in-hospital mortality in general trauma populations reported a survival benefit for level I trauma centers. Level I trauma centers were not associated with higher mortality than non-level I trauma centers (adjusted odd ratio, 0

    The definition of major trauma using different revisions of the abbreviated injury scale

    No full text
    Background: A threshold Injury Severity Score (ISS) ≥ 16 is common in classifying major trauma (MT), although the Abbreviated Injury Scale (AIS) has been extensively revised over time. The aim of this study was to determine effects of different AIS revisions (1998, 2008 and 2015) on clinical outcome measures. Methods: A retrospective observational cohort study including all primary admitted trauma patients was performed (in 2013–2014 AIS98 was used, in 2015–2016 AIS08, AIS08 mapped to AIS15). Different ISS thresholds for MT and their corresponding observed mortality and intensive care (ICU) admission rates were compared between AIS98, AIS08, and AIS15 with Chi-square tests and logistic regression models. Results: Thirty-nine thousand three hundred seventeen patients were included. Thresholds ISS08 ≥ 11 and ISS15 ≥ 12 were similar to a threshold ISS98 ≥ 16 for in-hospital mortality (12.9, 12.9, 13.1% respectively) and ICU admission (46.7, 46.2, 46.8% respectively). AIS98 and AIS08 differed significantly for in-hospital mortality in ISS 4–8 (χ2 = 9.926, p = 0.007), ISS 9–11 (χ2 = 13.541, p = 0.001), ISS 25–40 (χ2 = 13.905, p = 0.001) and ISS 41–75 (χ2 = 7.217, p = 0.027). Mortality risks did not differ significantly between AIS08 and AIS15. Conclusion: ISS08 ≥ 11 and ISS15 ≥ 12 perform similarly to a threshold ISS98 ≥ 16 for in-hospital mortality and ICU admission. This confirms studies evaluating mapped datasets, and is the first to present an evaluation of implementation of AIS15 on registry datasets. Defining MT using appropriate ISS thresholds is important for quality indicators, comparing datasets and adjusting for injury severity. Level of evidence: Prognostic and epidemiological, level III.</p
    corecore