68 research outputs found

    Nestedness for Dummies (NeD): A User-Friendly Web Interface for Exploratory Nestedness Analysis

    Get PDF
    Recent theoretical advances in nestedness analysis have led to the introduction of several alternative metrics to overcome most of the problems biasing the use of matrix 'temperature' calculated by Atmar's Nestedness Temperature Calculator. However, all of the currently available programs for nestedness analysis lack the user friendly appeal that has made the Nestedness Temperature Calculator one of the most popular community ecology programs. The software package NeD is an intuitive open source application for nestedness analysis that can be used online or locally under different operating systems. NeD is able to automatically handle different matrix formats, has batch functionalities and produces an output that can be easily copied and pasted to a spreadsheet. In addition to numerical results, NeD provides a graphic representation of the matrix under examination and of the corresponding maximally packed matrix. NeD allows users to select among the most used nestedness metrics, and to combine them with different null models. Integrating easiness of use with the recent theoretical advances in the field, NeD provides researchers not directly involved in theoretical debates with a simple yet robust statistical tool for a more conscious performance of nestedness analysis. NeD can be accessed at http: //purl.oclc.org/ned

    Morpho-molecular traits of Indo-Pacific and Caribbean <i>Halofolliculina </i>ciliate infections

    Get PDF
    Coral diseases are emerging as a major threat to coral reefs worldwide, and although many of them have been described, knowledge on their epizootiology is still limited. This is the case of the Halofolliculina ciliate infections, recognized as the skeletal eroding band (SEB) and Caribbean ciliate infection (CCI), two diseases caused by ciliates belonging to the genus Halofolliculina (Class Heterotrichea). Despite their similar macroscopic appearance, the two diseases are considered different and their pathogens have been hypothesized to belong to different Halofolliculina species. In this work, we analysed the morphology and genetic diversity of Halofolliculina ciliates collected in the Caribbean Sea, Red Sea and Indo-Pacific Ocean. Our analyses showed a strong macroscopic similarity of the lesions and similar settlement patterns of the halofolliculinids from the collection localities. In particular, the unique erosion patterns typical of the SEB were observed also in the Caribbean corals. Fine-scale morphological and morphometric examinations revealed a common phenotype in all analysed ciliates, unequivocally identified as Halofolliculina corallasia. Phylogenetic analyses based on nuclear and mitochondrial (COI) molecular markers consistently found all samples as monophyletic. However, although the nuclear marker displayed an extremely low intra-specific diversity, consistent with the morphological recognition of a single species, the analyses based on COI showed a certain level of divergence between samples from different localities. Genetic distances between localities fall within the intra-specific range found in other heterotrich ciliates, but they may also suggest the presence of a H. corallasia species complex. In conclusion, the presented morpho-molecular characterization of Halofolliculina reveals strong similarities between the pathogens causing SEB and CCI and call for further detailed studies about the distinction of these two coral diseases

    polyphyly of the genus zanclea and family zancleidae hydrozoa capitata revealed by the integrative analysis of two bryozoan associated species

    Get PDF
    The Zancleidae is a hydrozoan family that currently comprises three genera and 42 nominal species. The validity of numerous taxa in this family still needs to be assessed with integrative analyses and complete life cycle descriptions. The vast majority of its species live symbiotically with other organisms, among which cheilostomate bryozoans are the most common hosts. These bryozoan-associated zancleids are host-specific and encompass all species of the genera Halocoryne and Zanclella, as well as several species in the genus Zanclea. Zancleids show variable morphologies, including highly reduced polyps and medusae. Their phylogenetic history is uncertain due to the often intergrading morphologies and the shortage of molecular data. In the present study, two species of Zanclea from the Indian Ocean and the Red Sea are analysed, using morphological and DNA-based approaches. Morphological analyses of the polyp and medusa stages show that, despite a general resemblance with each other and with Zanclella diabolica, the two species differ in some characters, and this is supported also by molecular investigations. The DNA analyses show that the two species are monophyletic and closely related, but divergent from other Zanclea lineages. This newly recovered clade may correspond with the genus Zanclella or with a cryptic genus. The lack of both morphological and molecular data for several zancleid species did not allow to address this issue. Additionally, the single-and multi-locus phylogeny reconstructions reveal that both the family Zancleidae and the genus Zanclea are polyphyletic taxa, since they are composed of at least three divergent lineages. Most zancleid species have polyps and medusae similar to other closely related taxa, and this conserved general morphology poses a challenge in the delimitation of species, genera and even families in this group. Consequently, further conjunct morphological and molecular efforts are strongly needed to clarify the diversity and evolution of the family Zancleida as a whole

    Diversity, host specificity and biogeography in the Cladocorynidae (Hydrozoa, Capitata), with description of a new genus

    Get PDF
    The hydrozoan family Cladocorynidae inhabits tropical to temperate waters and comprises the two genera Pteroclava and Cladocoryne. Pteroclava lives in association with some octocorals and hydrozoans, whereas Cladocoryne is more generalist in terms of substrate choice. This work provides a thorough morpho-molecular reassessment of the Cladocorynidae by presenting the first well-supported phylogeny of the family based on the analyses of three mitochondrial and four nuclear markers. Notably, the two nominal genera were confirmed to be monophyletic and both morphological and genetic data led to the formal description of a new genus exclusively associated with octocorals, Pseudozanclea gen. nov. Maggioni & Montano. Accordingly, the diagnosis of the family was updated. The ancestral state reconstruction of selected characters revealed that the symbiosis with octocorals likely appeared in the most recent common ancestor of Pteroclava and Pseudozanclea. Additionally, the presence of euryteles aggregation in the polyp stage and the exumbrellar nematocyst pouches with euryteles represent synapomorphies of all cladocorynid taxa and probably emerged in their most recent common ancestor. The analysis of several Pteroclava krempfi colonies from Indo-Pacific and Caribbean localities associated with several host octocorals revealed a high intra-specific genetic variability. Single- and multi-locus species delimitations resulted in three to five species hypotheses, but the statistical analysis of morphometric data showed only limited distinction among the clades of P. krempfi. However, P. krempfi clades showed differences in both host specificity, mostly at the octocoral family level, and geographic distribution, with one clade found exclusively in the Caribbean Sea and the others found in the Indo-Pacific.Fil: Maggioni, Davide. Università degli Studi di Milano; ItaliaFil: Garese, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Danwei Huang. National University Of Singapore; SingapurFil: Hoeksema, Bert W.. University of Groningen; Países BajosFil: Arrigoni, Roberto. Stazione Zoologica Anton Dohrn; ItaliaFil: Seveso, Davide. Università degli Studi di Milano; ItaliaFil: Galli, Paolo. Università degli Studi di Milano; ItaliaFil: Berumen, Michael L.. King Abdullah University of Science and Technology; Arabia SauditaFil: Montalbetti, Enrico. Università degli Studi di Milano; ItaliaFil: Pica, Daniela. Consorzio Nazionale Interuniversitario per le Scienze del Mare; ItaliaFil: Torsani, Fabrizio. Università Politecnica Delle Marche; ItaliaFil: Montano, Simone. Università degli Studi di Milano; Itali

    Integrative systematics illuminates the relationships in two sponge-associated hydrozoan families (Capitata : Sphaerocorynidae and Zancleopsidae)

    Get PDF
    An integrated approach using morphological and genetic data is needed to disentangle taxonomic uncertainties affecting the hydrozoan families Sphaerocorynidae and Zancleopsidae. Here we used this approach to accurately characterise species in these families, identify the previously unknown polyp stages of the genera Euphysilla and Zancleopsis, which were originally described exclusively based on the medusa stages, describe a new sphaerocorynid genus and species, and assess the phylogenetic position of the two families within the Capitata. The monotypic genus Astrocoryne was found to be a synonym of Zancleopsis. Astrocoryne cabela was therefore transferred to the genus Zancleopsis as Zancleopsis cabela comb. nov. The new polyp-based genus and species Kudacoryne diaphana gen. nov. sp. nov. was erected within the Sphaerocorynidae. Both taxa are primarily based on genetic data, but the introduction of this new genus was made necessary by the fact that it clustered with the genera Heterocoryne and Euphysilla, despite showing Sphaerocoryne-like polyps. Interestingly, the species analysed in this work showed contrasting biogeographical patterns. Based on our data and literature records, some species appear to have a wide circumtropical range, whereas others are limited to few localities. Overall, these results lay the ground for future investigations aimed at resolving the taxonomy and systematics of these two enigmatic families.Peer reviewe

    Evolution and biogeography of the <i>Zanclea</i>-Scleractinia symbiosis

    Get PDF
    Scleractinian corals provide habitats for a broad variety of cryptofauna, which in turn may contribute to the overall functioning of coral symbiomes. Among these invertebrates, hydrozoans belonging to the genus Zanclea represent an increasingly known and ecologically important group of coral symbionts. In this study, we analysed 321 Zanclea colonies associated with 31 coral genera collected from 11 localities across the Indo-Pacific and Caribbean regions, and used a multi-disciplinary approach to shed light on the evolution and biogeography of the group. Overall, we found high genetic diversity of hydrozoans that spans nine clades corresponding to cryptic or pseudo-cryptic species. All but two clades are associated with one or two coral genera belonging to the Complex clade, whereas the remaining ones are generalists associated with both Complex and Robust corals. Despite the observed specificity patterns, no congruence between Zanclea and coral phylogenies was observed, suggesting a lack of coevolutionary events. Most Zanclea clades have a wide distribution across the Indo-Pacific, including a generalist group extending also into the Caribbean, while two host-specific clades are possibly found exclusively in the Red Sea, confirming the importance of this peripheral region as an endemicity hotspot. Ancestral state reconstruction suggests that the most recent common ancestor of all extant coral-associated Zanclea was a specialist species with a perisarc, occurring in what is now known as the Indo-Pacific. Ultimately, a mixture of geography- and host-related diversification processes is likely responsible for the observed enigmatic phylogenetic structure of coral-associated Zanclea

    Global tropical reef fish richness could decline by around half if corals are lost

    Get PDF
    Reef fishes are a treasured part of marine biodiversity, and also provide needed protein for many millions of people. Although most reef fishes might survive projected increases in ocean temperatures, corals are less tolerant. A few fish species strictly depend on corals for food and shelter, suggesting that coral extinctions could lead to some secondary fish extinctions. However, secondary extinctions could extend far beyond those few coral-dependent species. Furthermore, it is yet unknown how such fish declines might vary around the world. Current coral mass mortalities led us to ask how fish communities would respond to coral loss within and across oceans. We mapped 6964 coral-reef-fish species and 119 coral genera, and then regressed reef-fish species richness against coral generic richness at the 1 degrees scale (after controlling for biogeographic factors that drive species diversification). Consistent with small-scale studies, statistical extrapolations suggested that local fish richness across the globe would be around half its current value in a hypothetical world without coral, leading to more areas with low or intermediate fish species richness and fewer fish diversity hotspots.Peer reviewe

    Effects of the COVID-19 lockdowns on the management of coral restoration projects

    Get PDF
    Coral restoration initiatives are gaining significant momentum in a global effort to enhance the recovery of degraded coral reefs. However, the implementation and upkeep of coral nurseries are particularly demanding, so that unforeseen breaks in maintenance operations might jeopardize well-established projects. In the last 2 years, the COVID-19 pandemic has resulted in a temporary yet prolonged abandonment of several coral gardening infrastructures worldwide, including remote localities. Here we provide a first assessment of the potential impacts of monitoring and maintenance breakdown in a suite of coral restoration projects (based on floating rope nurseries) in Colombia, Seychelles, and Maldives. Our study comprises nine nurseries from six locations, hosting a total of 3,554 fragments belonging to three coral genera, that were left unsupervised for a period spanning from 29 to 61 weeks. Floating nursery structures experienced various levels of damage, and total fragment survival spanned from 40 to 95% among projects, with Pocillopora showing the highest survival rate in all locations present. Overall, our study shows that, under certain conditions, abandoned coral nurseries can remain functional for several months without suffering critical failure from biofouling and hydrodynamism. Still, even where gardening infrastructures were only marginally affected, the unavoidable interruptions in data collection have slowed down ongoing project progress, diminishing previous investments and reducing future funding opportunities. These results highlight the need to increase the resilience and self-sufficiency of coral restoration projects, so that the next global lockdown will not further shrink the increasing efforts to prevent coral reefs from disappearing.Peer reviewe

    Slow progression of black band disease in Goniopora cf. columna colonies may promote its persistence in a coral community

    No full text
    Coral diseases have been little investigated in the Indian Ocean and especially in the Republic of Maldives, where they were firstly observed in 2010. Through repeated monitoring, we observed a peculiar slow progression of Black Band Disease in several large colonies of the reef-building coral Goniopora cf. columna in the Maldivian reefs of Magoodhoo Island (Faafu Atoll). We argue that this may ensure the local persistence of the disease, possibly promoting long-term mortality of other, more susceptible coral species.JRC.H.3-Forest Resources and Climat
    corecore