151 research outputs found

    Phase 2 evaluation of parainfluenza type 3 cold passage mutant 45 live attenuated vaccine in healthy children 6-18 months old

    Get PDF
    © 2004 by the Infectious Diseases Society of America. All rights reserved.A phase 2 evaluation of live attenuated parainfluenza type 3 (PIV3)–cold passage mutant 45 (cp45) vaccine was conducted in 380 children 6–18 months old; 226 children (59%) were seronegative for PIV3. Of the 226 seronegative children, 114 received PIV3-cp45 vaccine, and 112 received placebo. No significant difference in the occurrence of adverse events (i.e., runny nose, cough, or temperature 38°C) was noted during the 14 days after vaccination. There was no difference between groups in the occurrence of acute otitis media or serous otitis media. Paired serum samples were available for 109 of the seronegative vaccine recipients and for 110 of the seronegative placebo recipients; 84% of seronegative vaccine recipients developed a 4-fold increase in antibody titers. The geometric mean antibody titer after vaccination was 1:25 in the vaccine group and <1:4 in the placebo group. PIV3-cp45 vaccine was safe and immunogenic in seronegative children and should be evaluated for efficacy in a phase 3 field trial.Robert B. Belshe, Frances K. Newman, Theodore F. Tsai, Ruth A. Karron, Keith Reisinger, Don Roberton, Helen Marshall, Richard Schwartz, James King, Frederick W. Henderson, William Rodriguez, Joseph M. Severs, Peter F. Wright, Harry Keyserling, Geoffrey A. Weinberg, Kenneth Bromberg, Richard Loh, Peter Sly, Peter McIntyre, John B. Ziegler, Jill Hackell, Anne Deatly, Alice Georgiu, Maribel Paschalis, Shin-Lu Wu, Joanne M. Tatem, Brian Murphy and Edwin Anderso

    Activated Met Signalling in the Developing Mouse Heart Leads to Cardiac Disease

    Get PDF
    BACKGROUND: The Hepatocyte Growth Factor (HGF) is a pleiotropic cytokine involved in many physiological processes, including skeletal muscle, placenta and liver development. Little is known about its role and that of Met tyrosine kinase receptor in cardiac development. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we generated two transgenic mice with cardiac-specific, tetracycline-suppressible expression of either Hepatocyte Growth Factor (HGF) or the constitutively activated Tpr-Met kinase to explore: i) the effect of stimulation of the endogenous Met receptor by autocrine production of HGF and ii) the consequence of sustained activation of Met signalling in the heart. We first showed that Met is present in the neonatal cardiomyocytes and is responsive to exogenous HGF. Exogenous HGF starting from prenatal stage enhanced cardiac proliferation and reduced sarcomeric proteins and Connexin43 (Cx43) in newborn mice. As adults, these transgenics developed systolic contractile dysfunction. Conversely, prenatal Tpr-Met expression was lethal after birth. Inducing Tpr-Met expression during postnatal life caused early-onset heart failure, characterized by decreased Cx43, upregulation of fetal genes and hypertrophy. CONCLUSIONS/SIGNIFICANCE: Taken together, our data show that excessive activation of the HGF/Met system in development may result in cardiac damage and suggest that Met signalling may be implicated in the pathogenesis of cardiac disease

    Electron Tomography of Fusiform Vesicles and Their Organization in Urothelial Cells

    Get PDF
    The formation of fusiform vesicles (FVs) is one of the most distinctive features in the urothelium of the urinary bladder. FVs represent compartments for intracellular transport of urothelial plaques, which modulate the surface area of the superficial urothelial (umbrella) cells during the distension-contraction cycle. We have analysed the three-dimensional (3D) structure of FVs and their organization in umbrella cells of mouse urinary bladders. Compared to chemical fixation, high pressure freezing gave a new insight into the ultrastructure of urothelial cells. Electron tomography on serial sections revealed that mature FVs had a shape of flattened discs, with a diameter of up to 1.2 µm. The lumen between the two opposing asymmetrically thickened membranes was very narrow, ranging from 5 nm to 10 nm. Freeze-fracturing and immunolabelling confirmed that FVs contain two opposing urothelial plaques connected by a hinge region that made an omega shaped curvature. In the central cytoplasm, 4–15 FVs were often organized into stacks. In the subapical cytoplasm, FVs were mainly organized as individual vesicles. Distension-contraction cycles did not affect the shape of mature FVs; however, their orientation changed from parallel in distended to perpendicular in contracted bladder with respect to the apical plasma membrane. In the intermediate cells, shorter and more dilated immature FVs were present. The salient outcome from this research is the first comprehensive, high resolution 3D view of the ultrastructure of FVs and how they are organized differently depending on their location in the cytoplasm of umbrella cells. The shape of mature FVs and their organization into tightly packed stacks makes them a perfect storage compartment, which transports large amounts of urothelial plaques while occupying a small volume of umbrella cell cytoplasm

    Comparison of Storage Conditions for Human Vaginal Microbiome Studies

    Get PDF
    BACKGROUND: The effect of storage conditions on the microbiome and metabolite composition of human biological samples has not been thoroughly investigated as a potential source of bias. We evaluated the effect of two common storage conditions used in clinical trials on the bacterial and metabolite composition of the vaginal microbiota using pyrosequencing of barcoded 16S rRNA gene sequencing and (1)H-NMR analyses. METHODOLOGY/PRINCIPAL FINDINGS: Eight women were enrolled and four mid-vaginal swabs were collected by a physician from each woman. The samples were either processed immediately, stored at -80°C for 4 weeks or at -20°C for 1 week followed by transfer to -80°C for another 4 weeks prior to analysis. Statistical methods, including Kolmogorovo-Smirnov and Wilcoxon tests, were performed to evaluate the differences in vaginal bacterial community composition and metabolites between samples stored under different conditions. The results showed that there were no significant differences between samples processed immediately after collection or stored for varying durations. (1)H-NMR analysis of the small molecule metabolites in vaginal secretions indicated that high levels of lactic acid were associated with Lactobacillus-dominated communities. Relative abundance of lactic acid did not appear to correlate with relative abundance of individual Lactobacillus sp. in this limited sample, although lower levels of lactic acid were observed when L. gasseri was dominant, indicating differences in metabolic output of seemingly similar communities. CONCLUSIONS/SIGNIFICANCE: These findings benefit large-scale, field-based microbiome and metabolomic studies of the vaginal microbiota

    Oral Administration of GW788388, an Inhibitor of Transforming Growth Factor Beta Signaling, Prevents Heart Fibrosis in Chagas Disease

    Get PDF
    Cardiac damage and dysfunction are prominent features in patients with chronic Chagas disease, which is caused by infection with the protozoan parasite Trypanosoma cruzi (T. cruzi) and affects 10–12 million individuals in South and Central America. Our group previously reported that transforming growth factor beta (TGFß) is implicated in several regulatory aspects of T. cruzi invasion and growth and in host tissue fibrosis. In the present work, we evaluated the therapeutic action of an oral inhibitor of TGFß signaling (GW788388) administered during the acute phase of experimental Chagas disease. GW788388 treatment significantly reduced mortality and decreased parasitemia. Electrocardiography showed that GW788388 treatment was effective in protecting the cardiac conduction system, preserving gap junction plaque distribution and avoiding the development of cardiac fibrosis. Inhibition of TGFß signaling in vivo appears to potently decrease T. cruzi infection and to prevent heart damage in a preclinical mouse model. This suggests that this class of molecules may represent a new therapeutic tool for acute and chronic Chagas disease that warrants further pre-clinical exploration. Administration of TGFß inhibitors during chronic infection in mouse models should be further evaluated, and future clinical trials should be envisaged

    Biogenesis and functions of bacterial S-layers.

    Get PDF
    The outer surface of many archaea and bacteria is coated with a proteinaceous surface layer (known as an S-layer), which is formed by the self-assembly of monomeric proteins into a regularly spaced, two-dimensional array. Bacteria possess dedicated pathways for the secretion and anchoring of the S-layer to the cell wall, and some Gram-positive species have large S-layer-associated gene families. S-layers have important roles in growth and survival, and their many functions include the maintenance of cell integrity, enzyme display and, in pathogens and commensals, interaction with the host and its immune system. In this Review, we discuss our current knowledge of S-layer and related proteins, including their structures, mechanisms of secretion and anchoring and their diverse functions

    miR-199a-5p Is Upregulated during Fibrogenic Response to Tissue Injury and Mediates TGFbeta-Induced Lung Fibroblast Activation by Targeting Caveolin-1

    Get PDF
    As miRNAs are associated with normal cellular processes, deregulation of miRNAs is thought to play a causative role in many complex diseases. Nevertheless, the precise contribution of miRNAs in fibrotic lung diseases, especially the idiopathic form (IPF), remains poorly understood. Given the poor response rate of IPF patients to current therapy, new insights into the pathogenic mechanisms controlling lung fibroblasts activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies for this devastating disease. To identify miRNAs with potential roles in lung fibrogenesis, we performed a genome-wide assessment of miRNA expression in lungs from two different mouse strains known for their distinct susceptibility to develop lung fibrosis after bleomycin exposure. This led to the identification of miR-199a-5p as the best miRNA candidate associated with bleomycin response. Importantly, miR-199a-5p pulmonary expression was also significantly increased in IPF patients (94 IPF versus 83 controls). In particular, levels of miR-199a-5p were selectively increased in myofibroblasts from injured mouse lungs and fibroblastic foci, a histologic feature associated with IPF. Therefore, miR-199a-5p profibrotic effects were further investigated in cultured lung fibroblasts: miR-199a-5p expression was induced upon TGFβ exposure, and ectopic expression of miR-199a-5p was sufficient to promote the pathogenic activation of pulmonary fibroblasts including proliferation, migration, invasion, and differentiation into myofibroblasts. In addition, we demonstrated that miR-199a-5p is a key effector of TGFβ signaling in lung fibroblasts by regulating CAV1, a critical mediator of pulmonary fibrosis. Remarkably, aberrant expression of miR-199a-5p was also found in unilateral ureteral obstruction mouse model of kidney fibrosis, as well as in both bile duct ligation and CCl4-induced mouse models of liver fibrosis, suggesting that dysregulation of miR-199a-5p represents a general mechanism contributing to the fibrotic process. MiR-199a-5p thus behaves as a major regulator of tissue fibrosis with therapeutic potency to treat fibroproliferative diseases. © 2013 Lino Cardenas et al
    corecore