129 research outputs found

    Differences in nasal cellular infiltrates between allergic children and age-matched controls

    Get PDF
    Little is known about the cellular infiltrates in the nasal mucosa of children. This study was set up to compare the nasal cellular infiltrates in biopsy specimens from allergic children and controls. Atopic children were distinguished from controls on the basis of symptoms of allergic rhinitis and/or asthma, total serum immunoglobulin (Ig)E, family history and specific serum IgE to food and aeroallergens. Fifteen allergic patients (median age 4.3 yrs) and 15 age-matched nonallergic control subjects were evaluated. The number of cells positive for CD1a, CD4, CD8, CD19, CD68, chymase, tryptase, IgE and major basic protein was determined in the mucosa of the inferior turbinate. A significantly higher number of IgE-positive cells and mast cells was found in the epithelia of the allergic group. In the lamina propria, higher numbers of IgE-positive cells and eosinophils were found. Langerhans' cells positive for IgE were only seen in allergic children with specific serum IgE against aeroallergens. These children also had a higher number of IgE-positive mast cells compared to controls and atopic children without specific serum IgE. These results show that the nasal cellular infiltrates of allergic children differ from nonallergic control subjects. Prior to the detection of specific serum immunoglobulin E, cellular changes can be found in the nasal mucosa of atopic children

    Exome sequencing and functional analyses suggest that SIX6 is a gene involved in an altered proliferation-differentiation balance early in life and optic nerve degeneration at old age

    Get PDF
    Primary open-angle glaucoma (POAG) is a hereditary neurodegenerative disease, characterized by optic nerve changes including increased excavation, notching and optic disc hemorrhages. The excavation can be described by the vertical cup-disc ratio (VCDR). Previously, genome-wide significant evidence for the association of rs10483727 in SIX1-SIX6 locus with VCDR and subsequent POAG was found. Using 1000 genomes-based imputation of four independent population-based cohorts in the Netherlands, we identified a missense variant rs33912345 (His141Asn) in SIX6 associated with VCDR (Pmeta = 7.74 × 10-7, n = 11 473) and POAG (Pmeta = 6.09 × 10-3, n = 292). Exome sequencing analysis revealed another missense variant rs146737847 (Glu129Lys) also in SIX6 associated with VCDR (P = 5.09 × 10-3, n = 1208). These two findings point to SIX6 as the responsible gene for the previously reported association signal. Functional characterization of SIX6 in zebrafish revealed that knockdown of six6b led to a small eye phenotype. Histological analysis showed retinal lamination, implying an apparent normal development of the eye, but an underdeveloped lens, and reduced optic nerve diameter. Expression analysis of morphants at 3 dpf showed a 5.5-fold up-regulation of cdkn2b, a cyclin-dependent kinase inhibitor, involved in cell cycle regulation and previously associated with VCDR and POAG in genome-wide association studies (GWASs). Since both six6b and cdkn2b play a key role in cell proliferation, we assessed the proliferative activity in the eye of morphants and found an alteration in the proliferative pattern of retinal cells. Our findings in humans and zebrafish suggest a functional involvement of six6b in early eye development, and open new insights into the genetic architecture of POAG

    Room Temperature Optically and Magnetically Active Edges in Phosphorene Nanoribbons

    Full text link
    Nanoribbons - nanometer wide strips of a two-dimensional material - are a unique system in condensed matter physics. They combine the exotic electronic structures of low-dimensional materials with an enhanced number of exposed edges, where phenomena including ultralong spin coherence times, quantum confinement and topologically protected states can emerge. An exciting prospect for this new material concept is the potential for both a tunable semiconducting electronic structure and magnetism along the nanoribbon edge. This combination of magnetism and semiconducting properties is the first step in unlocking spin-based electronics such as non-volatile transistors, a route to low-energy computing, and has thus far typically only been observed in doped semiconductor systems and/or at low temperatures. Here, we report the magnetic and semiconducting properties of phosphorene nanoribbons (PNRs). Static (SQUID) and dynamic (EPR) magnetization probes demonstrate that at room temperature, films of PNRs exhibit macroscopic magnetic properties, arising from their edge, with internal fields of ~ 250 to 800 mT. In solution, a giant magnetic anisotropy enables the alignment of PNRs at modest sub-1T fields. By leveraging this alignment effect, we discover that upon photoexcitation, energy is rapidly funneled to a dark-exciton state that is localized to the magnetic edge and coupled to a symmetry-forbidden edge phonon mode. Our results establish PNRs as a unique candidate system for studying the interplay of magnetism and semiconducting ground states at room temperature and provide a stepping-stone towards using low-dimensional nanomaterials in quantum electronics.Comment: 18 pages, 4 figure

    NPHP4 Variants Are Associated With Pleiotropic Heart Malformations

    Get PDF
    Rationale: Congenital heart malformations are a major cause of morbidity and mortality, especially in young children. Failure to establish normal left-right (L-R) asymmetry often results in cardiovascular malformations and other laterality defects of visceral organs. Objective: To identify genetic mutations causing cardiac laterality defects. Methods and Results: We performed a genome-wide linkage analysis in patients with cardiac laterality defects from a consanguineous family. The patients had combinations of defects that included dextrocardia, transposition of great arteries, double-outlet right ventricle, atrioventricular septal defects, and caval vein abnormalities. Sequencing of positional candidate genes identified mutations in NPHP4. We performed mutation analysis of NPHP4 in 146 unrelated patients with similar cardiac laterality defects. Forty-one percent of these patients also had laterality defects of the abdominal organs. We identified 8 additional missense variants that were absent or very rare in control subjects. To study the role of nphp4 in establishing L-R asymmetry, we used antisense morpholinos to knockdown nphp4 expression in zebrafish. Depletion of nphp4 disrupted L-R patterning as well as cardiac and gut laterality. Cardiac laterality defects were partially rescued by human NPHP4 mRNA, whereas mutant NPHP4 containing genetic variants found in patients failed to rescue. We show that nphp4 is involved in the formation of motile cilia in Kupffer's vesicle, which generate asymmetrical fluid flow necessary for normal L-R asymmetry. Conclusions: NPHP4 mutations are associated with cardiac laterality defects and heterotaxy. In zebrafish, nphp4 is essential for the development and function of Kupffer's vesicle cilia and is required for global L-R patterning

    Loss of Nuclear Activity of the FBXO7 Protein in Patients with Parkinsonian-Pyramidal Syndrome (PARK15)

    Get PDF
    Mutations in the F-box only protein 7 gene (FBXO7) cause PARK15, an autosomal recessive neurodegenerative disease presenting with severe levodopa-responsive parkinsonism and pyramidal disturbances. Understanding the PARK15 pathogenesis might thus provide clues on the mechanisms of maintenance of brain dopaminergic neurons, the same which are lost in Parkinson's disease. The protein(s) encoded by FBXO7 remain very poorly characterized. Here, we show that two protein isoforms are expressed from the FBXO7 gene in normal human cells. The isoform 1 is more abundant, particularly in primary skin fibroblasts. Both isoforms are undetectable in cell lines from the PARK15 patient of an Italian family; the isoform 1 is undetectable and the isoform 2 is severely decreased in the patients from a Dutch PARK15 family. In human cell lines and mouse primary neurons, the endogenous or over-expressed, wild type FBXO7 isoform 1 displays mostly a diffuse nuclear localization. An intact N-terminus is needed for the nuclear FBXO7 localization, as N-terminal modification by PARK15-linked missense mutation, or N-terminus tag leads to cytoplasmic mislocalization. Furthermore, the N-terminus of wild type FBXO7 (but not of mutant FBXO7) is able to confer nuclear localization to profilin (a cytoplasmic protein). Our data also suggest that overexpressed mutant FBXO7 proteins (T22M, R378G and R498X) have decreased stability compared to their wild type counterpart. In human brain, FBXO7 immunoreactivity was highest in the nuclei of neurons throughout the cerebral cortex, intermediate in the globus pallidum and the substantia nigra, and lowest in the hippocampus and cerebellum. In conclusion, the common cellular abnormality found in the PARK15 patients from the Dutch and Italian families is the depletion of the FBXO7 isoform 1, which normally localizes in the cell nucleus. The activity of FBXO7 in the nucleus appears therefore crucial for the maintenance of brain neurons and the pathogenesis of PARK15

    Congenital cardiovascular defects in children with intestinal malrotation

    Get PDF
    Intestinal malrotation (IM) and cardiovascular defects (CCVD) are both common congenital defects. We investigated the prevalence and types of CCVD in a 25-year IM population, and its association with post-IM-operative morbidity and mortality. Data on the type of CCVD, other congenital defects, syndromes, associations, post-IM-operative morbidity and mortality were retrospectively reviewed from the records of IM patients born between 1980 and 2005. Data were analyzed on (significant) differences between CCVD subgroups, and risk factors for both morbidity and mortality were calculated. Seventy-seven of 284 IM patients (27.1%) were diagnosed with a major or minor CCVD (37 and 40 patients, respectively). Syndromes and associations were more frequently diagnosed in patients with major than with a minor CCVD (67.6 vs. 40%, respectively). Post-IM-operative complications, although frequently observed (61%), did not differ between patients with major and minor CCVD. Physical CCVD signs before IM surgery increased post-IM-operative morbidity significantly (OR 4.0, 95% CI 1.4–11.0). Fifteen patients died (19.5%), seven due to cardiovascular cause. Mortality risk was increased by intestinal ischemia and post-IM-operative complications and by major CCVD after correction for age at weight at the time of IM operation. Congenital cardiovascular defects in children with intestinal malrotation are common, with high morbidity and mortality rates after IM operation. Elective IM surgery in young patients with CCVD should be performed in a centre with adequate paediatric cardiac care. Benefits of laparoscopic intervention need further study

    LEARN 2 MOVE 2-3: a randomized controlled trial on the efficacy of child-focused intervention and context-focused intervention in preschool children with cerebral palsy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the efficacy and the working mechanisms of physical and occupational therapy interventions for children with cerebral palsy (CP). In recent years a shift from a child-focused intervention approach to a more context-focused intervention approach can be recognized. Until now the evidence on the efficacy and the working mechanisms of these interventions for children with CP is inconclusive. This study aims to evaluate the efficacy and working mechanisms of two intervention approaches compared to regular care intervention in improving mobility and self-care skills of children (2-3 years) with CP and their families: a child-focused intervention approach and a context-focused intervention approach.</p> <p>Methods/Design</p> <p>A multi-centre, randomized controlled trial research design will be used. Ninety-four children with CP (Gross Motor Function Classification System (GMFCS) level I-IV; age 2 to 3 years), their parents, and service providers (physical and occupational therapists) will be included. During a period of six months children will receive child-focused, context-focused or regular care intervention. Therapists will be randomly assigned to deliver either a child-focused intervention approach, a context-focused intervention approach or regular care intervention. Children follow their therapist into the allocated intervention arm. After the six months study-intervention period, all participants return to regular care intervention. Outcomes will be evaluated at baseline, after six months and at a three months follow-up period. Primary outcome is the capability of functional skills in self-care and mobility, using the Functional Skills Scale of the Pediatric Evaluation of Disability Inventory (PEDI). Other outcomes will be quality of life and the domains of the International Classification of Functioning, Disability and Health - for Children and Youth (ICF-CY), including body function and structure, activities (gross motor capacity and performance of daily activities), social participation, environmental variables (family functioning, parental empowerment).</p> <p>Discussion</p> <p>This paper presents the background information, design, description of interventions and protocol for this study on the efficacy and working mechanisms of child-focused intervention approach and context-focused intervention approach compared to regular care intervention in mobility and self-care skills of children (2-3 years) with CP.</p> <p>Trial registration</p> <p>This study is registered in the Dutch Trial Register as NTR1900</p
    corecore