25 research outputs found

    CVID-Associated B Cell Activating Factor Receptor Variants Change Receptor Oligomerization, Ligand Binding, and Signaling Responses.

    Get PDF
    Binding of the B cell activating factor (BAFF) to its receptor (BAFFR) activates in mature B cells many essential pro-survival functions. Null mutations in the BAFFR gene result in complete BAFFR deficiency and cause a block in B cell development at the transition from immature to mature B cells leading therefore to B lymphopenia and hypogammaglobulinemia. In addition to complete BAFFR deficiency, single nucleotide variants encoding BAFFR missense mutations were found in patients suffering from common variable immunodeficiency (CVID), autoimmunity, or B cell lymphomas. As it remained unclear to which extent such variants disturb the activity of BAFFR, we performed genetic association studies and developed a cellular system that allows the unbiased analysis of BAFFR variants regarding oligomerization, signaling, and ectodomain shedding. In addition to genetic association studies, the BAFFR variants P21R, A52T, G64V, DUP92-95, P146S, and H159Y were expressed by lentiviral gene transfer in DG-75 Burkitt's lymphoma cells and analyzed for their impacts on BAFFR function. Binding of BAFF to BAFFR was affected by P21R and A52T. Spontaneous oligomerization of BAFFR was disturbed by P21R, A52T, G64V, and P146S. BAFF-dependent activation of NF-κB2 was reduced by P21R and P146S, while interactions between BAFFR and the B cell antigen receptor component CD79B and AKT phosphorylation were impaired by P21R, A52T, G64V, and DUP92-95. P21R, G64V, and DUP92-95 interfered with phosphorylation of ERK1/2, while BAFF-induced shedding of the BAFFR ectodomain was only impaired by P21R. Although all variants change BAFFR function and have the potential to contribute as modifiers to the development of primary antibody deficiencies, autoimmunity, and lymphoma, P21R is the only variant that was found to correlate positively with CVID

    BAFFR activates PI3K/AKT signaling in human naive but not in switched memory B cells through direct interactions with B cell antigen receptors.

    Get PDF
    Binding of BAFF to BAFFR activates in mature B cells PI3K/AKT signaling regulating protein synthesis, metabolic fitness, and survival. In humans, naive and memory B cells express the same levels of BAFFR, but only memory B cells seem to survive without BAFF. Here, we show that BAFF activates PI3K/AKT only in naive B cells and changes the expression of genes regulating migration, proliferation, growth, and survival. BAFF-induced PI3K/AKT activation requires direct interactions between BAFFR and the B cell antigen receptor (BCR) components CD79A and CD79B and is enhanced by the AKT coactivator TCL1A. Compared to memory B cells, naive B cells express more surface BCRs, which interact better with BAFFR than IgG or IgA, thus allowing stronger responses to BAFF. As ablation of BAFFR in naive and memory B cells causes cell death independent of BAFF-induced signaling, BAFFR seems to act also as an intrinsic factor for B cell survival

    Ligand-independent oligomerization of TACI is controlled by the transmembrane domain and regulates proliferation of activated B cells.

    Get PDF
    In mature B cells, TACI controls class-switch recombination and differentiation into plasma cells during T cell-independent antibody responses. TACI binds the ligands BAFF and APRIL. Approximately 10% of patients with common variable immunodeficiency (CVID) carry TACI mutations, of which A181E and C172Y are in the transmembrane domain. Residues A181 and C172 are located on distinct sides of the transmembrane helix, which is predicted by molecular modeling to spontaneously assemble into trimers and dimers. In human B cells, these mutations impair ligand-dependent (C172Y) and -independent (A181E) TACI multimerization and signaling, as well as TACI-enhanced proliferation and/or IgA production. Genetic inactivation of TACI in primary human B cells impaired survival of CpG-activated cells in the absence of ligand. These results identify the transmembrane region of TACI as an active interface for TACI multimerization in signal transduction, in particular for ligand-independent signals. These functions are perturbed by CVID-associated mutations

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    BAFF receptor polymorphisms and deficiency in humans

    No full text
    The BAFF-receptor (BAFFR) is a member of the TNF-receptor family. It is expressed only by B cells and binds BAFF as single ligand, which activates key signaling pathways regulating essential cellular functions, including survival, protein synthesis, and metabolic fitness. In humans, BAFFR deficiency interrupts B cell development at the transition from immature to mature B cells and causes B lymphopenia, hypogammaglobulinemia, and impaired humoral immune responses. Polymorphisms in TNFRSF13C gene affecting BAFFR oligomerization and signaling have been described in patients with immunodeficiency, autoimmunity and B cell lymphomas. Despite a uniform expression pattern of BAFFR in peripheral mature B cells, depletion of BAFF with neutralizing antibodies in patients with systemic lupus erythematosus does not affect the survival of switched memory B cells. These findings imply a distinct dependency of mature B cell subsets on BAFF/BAFFR interaction and highlight the contribution of BAFFR-derived signals in peripheral B cell development and homeostasis. © 2021 Elsevier Lt

    Sensitivity of the Cobas Amplicor system for detection of Mycobacterium tuberculosis in respiratory and extrapulmonary specimens

    Get PDF
    ABSTRACTThe Cobas Amplicor PCR system (CA-PCR) was compared with culture and staining for acid-fast bacilli (AFB) for the early detection of Mycobacterium tuberculosis in respiratory clinical specimens and otherwise normal sterile body fluids. The sensitivity, specificity and positive and negative predictive values of CA-PCR were determined with AFB-positive and AFB-negative specimens. The sensitivity of CA-PCR ranged from 73.6% to 100% for AFB-positive samples, while sputa collected after bronchoscopy were the most useful specimens, with 70% sensitivity and 98.6% specificity among the AFB-negative samples

    SIAE Rare Variants in Juvenile Idiopathic Arthritis and Primary Antibody Deficiencies

    No full text
    Sialic acid acetylesterase (SIAE) deficiency was suggested to lower the levels of ligands for sialic acid-binding immunoglobulin-like receptors, decreasing the threshold for B-cell activation. In humans, studies of rare heterozygous loss-of-function mutations in SIAE gene in common autoimmune diseases, including juvenile idiopathic arthritis (JIA), yielded inconsistent results. Considering the distinct pathogenesis of the two main subtypes of JIA, autoinflammatory systemic (sJIA) and autoimmune oligo/polyarticular (aJIA), and a predisposition to autoimmunity displayed by patients and families with primary antibody deficiencies (PADs), the aim of our study was to analyze whether SIAE rare variants are associated with both the phenotype of JIA and the autoimmunity risk in families with PADs. A cohort of 69 patients with JIA, 117 healthy children, 54 patients, and family members with PADs were enrolled in the study. Three novel SIAE variants (p.Q343P, p.Y495X, and c.1320+33T&gt;C) were found only in patients with aJIA but interestingly also in their healthy relatives without autoimmunity, while none of PAD patients or their relatives carried SIAE defects. Our results show that SIAE rare variants are not causative of autoimmunity as single defects. © 2017 Eirini Sevdali et al

    SIAE Rare Variants in Juvenile Idiopathic Arthritis and Primary Antibody Deficiencies

    No full text
    Sialic acid acetylesterase (SIAE) deficiency was suggested to lower the levels of ligands for sialic acid-binding immunoglobulin-like receptors, decreasing the threshold for B-cell activation. In humans, studies of rare heterozygous loss-of-function mutations in SIAE gene in common autoimmune diseases, including juvenile idiopathic arthritis (JIA), yielded inconsistent results. Considering the distinct pathogenesis of the two main subtypes of JIA, autoinflammatory systemic (sJIA) and autoimmune oligo/polyarticular (aJIA), and a predisposition to autoimmunity displayed by patients and families with primary antibody deficiencies (PADs), the aim of our study was to analyze whether SIAE rare variants are associated with both the phenotype of JIA and the autoimmunity risk in families with PADs. A cohort of 69 patients with JIA, 117 healthy children, 54 patients, and family members with PADs were enrolled in the study. Three novel SIAE variants (p.Q343P, p.Y495X, and c.1320+33T>C) were found only in patients with aJIA but interestingly also in their healthy relatives without autoimmunity, while none of PAD patients or their relatives carried SIAE defects. Our results show that SIAE rare variants are not causative of autoimmunity as single defects. © 2017 Eirini Sevdali et al
    corecore