48 research outputs found
Phloem transport and drought
Abstract Drought challenges plant water uptake and the vascular system. In the xylem it causes embolism that impairs water transport from the soil to the leaves and, if uncontrolled, may even lead to plant mortality via hydraulic failure. What happens in the phloem, however, is less clear because measuring phloem transport is still a significant challenge to plant science. In all vascular plants, phloem and xylem tissues are located next to each other, and there is clear evidence that these tissues exchange water. Therefore, drought should also lead to water shortage in the phloem. In this review, theories used in phloem transport models have been applied to drought conditions, with the goal of shedding light on how phloem transport failure might occur. The review revealed that phloem failure could occur either because of viscosity build-up at the source sites or by a failure to maintain phloem water status and cell turgor. Which one of these dominates depends on the hydraulic permeability of phloem conduit walls. Impermeable walls will lead to viscosity build-up affecting flow rates, while permeable walls make the plant more susceptible to phloem turgor failure. Current empirical evidence suggests that phloem failure resulting from phloem turgor collapse is the more likely mechanism at least in relatively isohydric plants
Freeze/Thaw-Induced Embolism: Probability of Critical Bubble Formation Depends on Speed of Ice Formation
Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumption that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.We are grateful for support from the Andrew W. Mellon Foundation and the Materials Research Science and Engineering Center at Harvard University. We also thank the Australian Research Council for support (DP110105380)
Recommended from our members
Freeze/Thaw-Induced Embolism: Probability of Critical Bubble Formation Depends on Speed of Ice Formation
Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumption that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.Organismic and Evolutionary Biolog
Recommended from our members
Increasing impacts of extreme droughts on vegetation productivity under climate change
Terrestrial gross primary production (GPP) is the basis of vegetation growth and food production globally1 and plays a critical role in regulating atmospheric CO2 through its impact on ecosystem carbon balance. Even though higher CO2 concentrations in future decades can increase GPP2, low soil water availability, heat stress and disturbances associated with droughts could reduce the benefits of such CO2 fertilization. Here we analysed outputs of 13 Earth system models to show an increasingly stronger impact on GPP by extreme droughts than by mild and moderate droughts over the twenty-first century. Due to a dramatic increase in the frequency of extreme droughts, the magnitude of globally averaged reductions in GPP associated with extreme droughts was projected to be nearly tripled by the last quarter of this century (2075–2099) relative to that of the historical period (1850–1999) under both high and intermediate GHG emission scenarios. By contrast, the magnitude of GPP reductions associated with mild and moderate droughts was not projected to increase substantially. Our analysis indicates a high risk of extreme droughts to the global carbon cycle with atmospheric warming; however, this risk can be potentially mitigated by positive anomalies of GPP associated with favourable environmental conditions
Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution : Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure
The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but withmuch lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/ intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO2 concentration based on leaf gas exchange measurements. Manufactures of leaf gas exchange measurement systems should incorporate leaf water potentials in measurement set-ups.Peer reviewe
Increasing impacts of extreme droughts on vegetation productivity under climate change
Terrestrial gross primary production (GPP) is the basis of vegetation growth and food production globally1 and plays a critical role in regulating atmospheric CO2 through its impact on ecosystem carbon balance. Even though higher CO2 concentrations in future decades can increase GPP2, low soil water availability, heat stress and disturbances associated with droughts could reduce the benefits of such CO2 fertilization. Here we analysed outputs of 13 Earth system models to show an increasingly stronger impact on GPP by extreme droughts than by mild and moderate droughts over the twenty-first century. Due to a dramatic increase in the frequency of extreme droughts, the magnitude of globally averaged reductions in GPP associated with extreme droughts was projected to be nearly tripled by the last quarter of this century (2075–2099) relative to that of the historical period (1850–1999) under both high and intermediate GHG emission scenarios. By contrast, the magnitude of GPP reductions associated with mild and moderate droughts was not projected to increase substantially. Our analysis indicates a high risk of extreme droughts to the global carbon cycle with atmospheric warming; however, this risk can be potentially mitigated by positive anomalies of GPP associated with favourable environmental conditions
An empirical method that separates irreversible stem radial growth from bark water content changes in trees : theory and case studies
Substantial uncertainty surrounds our knowledge of tree stem growth, with some of the most basic questions, such as when stem radial growth occurs through the daily cycle, still unanswered. We employed high-resolution point dendrometers, sap flow sensors, and developed theory and statistical approaches, to devise a novel method separating irreversible radial growth from elastic tension-driven and elastic osmotically driven changes in bark water content. We tested this method using data from five case study species. Experimental manipulations, namely a field irrigation experiment on Scots pine and a stem girdling experiment on red forest gum trees, were used to validate the theory. Time courses of stem radial growth following irrigation and stem girdling were consistent with a-priori predictions. Patterns of stem radial growth varied across case studies, with growth occurring during the day and/or night, consistent with the available literature. Importantly, our approach provides a valuable alternative to existing methods, as it can be approximated by a simple empirical interpolation routine that derives irreversible radial growth using standard regression techniques. Our novel method provides an improved understanding of the relative source-sink carbon dynamics of tree stems at a sub-daily time scale.Peer reviewe
Recommended from our members
Dynamics of leaf water relations components in co-occurring iso- and anisohydric conifer species
Because iso- and anisohydric species differ in stomatal regulation
of the rate and magnitude of fluctuations in shoot
water potential, they may be expected to show differences in
the plasticity of their shoot water relations components, but
explicit comparisons of this nature have rarely been made.
We subjected excised shoots of co-occurring anisohydric
Juniperus monosperma and isohydric Pinus edulis to
pressure-volume analysis with and without prior artificial
rehydration. In J. monosperma, the shoot water potential at
turgor loss (Ψ[subscript TLP]) ranged from −3.4 MPa in artificially
rehydrated shoots to −6.6 MPa in shoots with an initial Ψ of
−5.5 MPa, whereas in P. edulis mean Ψ[subscript TLP] remained at ∼−3.0 MPa over a range of initial Ψ from −0.1 to −2.3 MPa.The
shoot osmotic potential at full turgor and the bulk modulus
of elasticity also declined sharply with shoot Ψ in
J. monosperma, but not in P. edulis. The contrasting behaviour
of J. monosperma and P. edulis reflects differences in
their capacity for homeostatic regulation of turgor that may
be representative of aniso- and isohydric species in general,
and may also be associated with the greater capacity of
J. monosperma to withstand severe drought.Keywords: osmotic potential, anisohydry, turgor, isohydry, droughtKeywords: osmotic potential, anisohydry, turgor, isohydry, drough