32 research outputs found

    Wireless thin film transistor based on micro magnetic induction coupling antenna

    Get PDF
    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the 'internet of things' (IoT).1

    Air-stable van der Waals PtTe2 conductors with high current-carrying capacity and strong spin- orbit interaction

    Get PDF
    High-performance van der Waals (vdW) integrated electronics and spintronics require reliable current-carrying capacity. However, it is challenging to achieve high current density and air-stable performance using vdW metals owing to the fast electrical breakdown triggered by defects or oxidation. Here, we report that spin-orbit interacted synthetic PtTe2 layers exhibit significant electrical reliability and robustness in ambient air. The 4-nm-thick PtTe2 synthesized at a low temperature (similar to 400 degrees C) shows intrinsic metallic transport behavior and a weak antilocalization effect attributed to the strong spin-orbit scattering. Remarkably, PtTe2 sustains a high current density approaching approximate to 31.5 MA cm(-2), which is the highest value among electrical interconnect candidates under oxygen exposure. Electrical failure is caused by the Joule heating of PtTe2 rather than defect-induced electromigration, which was achievable by the native TeOx passivation. The high-quality growth of PtTe2 and the investigation of its transport behaviors lay out essential foundations for the development of emerging vdW spin-orbitronics

    Dichotomizing Level of Pial Collaterals on Multiphase CT Angiography for Endovascular Treatment in Acute Ischemic Stroke: Should It Be Refined for 6-Hour Time Window?

    Get PDF
    Purpose Although endovascular treatment is currently thought to only be suitable for patients who have pial arterial filling scores >3 as determined by multiphase computed tomography angiography (mpCTA), a cut-off score of 3 was determined by a study, including patients within 12 hours after symptom onset. We aimed to investigate whether a cut-off score of 3 for endovascular treatment within 6 hours of symptom onset is an appropriate predictor of good functional outcome at 3 months. Materials and Methods From April 2015 to January 2016, acute ischemic stroke patients treated with mechanical thrombectomy within 6 hours of symptom onset were enrolled into this study. Pial arterial filling scores were semi-quantitatively assessed using mpCTA, and clinical and radiological parameters were compared between patients with favorable and unfavorable outcomes. Multivariate logistic regression analysis was then performed to investigate the independent association between clinical outcome and pial collateral score, with the predictive power of the latter assessed using C-statistics. Results Of the 38 patients enrolled, 20 (52.6%) had a favorable outcome and 18 had an unfavorable outcome, with the latter group showing a lower mean pial arterial filling score (3.6±0.8 vs. 2.4±1.2, P=0.002). After adjusting for variables with a P-value of 2 vs. ≤2. Conclusion A pial arterial filling cut-off score of 2 as determined by mpCTA appears to be more suitable for predicting clinical outcomes following endovascular treatment within 6 hours of symptom onset than the cut-off of 3 that had been previously suggested

    Electrically Robust Single-Crystalline WTe2 Nanobelts for Nanoscale Electrical Interconnects

    Get PDF
    As the elements of integrated circuits are downsized to the nanoscale, the current Cu-based interconnects are facing limitations due to increased resistivity and decreased current-carrying capacity because of scaling. Here, the bottom-up synthesis of single-crystalline WTe2 nanobelts and low- and high-field electrical characterization of nanoscale interconnect test structures in various ambient conditions are reported. Unlike exfoliated flakes obtained by the top-down approach, the bottom-up growth mode of WTe2 nanobelts allows systemic characterization of the electrical properties of WTe2 single crystals as a function of channel dimensions. Using a 1D heat transport model and a power law, it is determined that the breakdown of WTe2 devices under vacuum and with AlOx capping layer follows an ideal pattern for Joule heating, far from edge scattering. High-field electrical measurements and self-heating modeling demonstrate that the WTe2 nanobelts have a breakdown current density approaching approximate to 100 MA cm(-2), remarkably higher than those of conventional metals and other transition-metal chalcogenides, and sustain the highest electrical power per channel length (approximate to 16.4 W cm(-1)) among the interconnect candidates. The results suggest superior robustness of WTe2 against high-bias sweep and its possible applicability in future nanoelectronics

    Cerebral infarction and cortical subarachnoid hemorrhage preceded vascular contraction in reversible cerebral vasoconstriction syndrome patient with hidden breast cancer

    No full text
    Thunderclap headaches, stroke, seizures, and cortical subarachnoid hemorrhage can all reveal reversible cerebral vasoconstriction syndrome (RCVS). Most parenchymal brain lesions occur simultaneously and sequentially with cerebral vasoconstriction in RCVS patients. Therefore, it is not easy to suspect RCVS in patients with only parenchymal brain lesions without vasoconstriction even if they present with a typical thunderclap headache. Furthermore, RCVS should be differentiated from central nervous system vasculitis. However, it is especially difficult to distinguish RCVS from the cerebral involvement of multisystem vasculitis when there is a positive result in the serologic test for autoantibodies. We report a case of RCVS with hidden breast cancer in which ischemic stroke and cortical subarachnoid hemorrhage were observed earlier than vasoconstriction, and there were positive autoantibodies

    Brain Oxygen Monitoring via Jugular Venous Oxygen Saturation in a Patient with Fulminant Hepatic Failure

    No full text
    Fulminant hepatic failure (FHF) is often accompanied by a myriad of neurologic complications, which are associated with high morbidity and mortality. Although appropriate neuromonitoring is recommended for early diagnosis and to minimize secondary brain injury, individuals with FHF usually have a high chance of coagulopathy, which limits the ability to use invasive neuromonitoring. Jugular bulb venous oxygen saturation (JvO2) monitoring is well known as a surrogate direct measures of global brain oxygen use. We report the case of a patient with increased intracranial pressure due to FHF, in which JvO2 was used for appropriate brain oxygen monitoring

    Major vessel occlusion may predict subtherapeutic anticoagulation intensity and feasibility of administration of intravenous thrombolytics

    No full text
    <div><p>Objective</p><p>We investigated the association between the presence of major vessel occlusion (MVO) and the intensity of the International Normalized Ratio (INR) in cardioembolic high-risk patients taking warfarin. We also evaluated whether the presence of MVO could predict the subtherapeutic range of INR ≤1.7 ensuring safe administration of intravenous thrombolytics.</p><p>Methods</p><p>The medical records of 177 cardioembolic stroke patients who were taking warfarin between April, 2008 and March, 2015 were retrospectively analyzed. Logistic regression analysis was performed to calculate the odds ratios (ORs) and 95% confidence intervals (95% CIs) for the association between vessel occlusion and intensity of INR. To predict INR ≤1.7, decision tree analysis was performed.</p><p>Results</p><p>INR was inversely associated with MVO in an unadjusted model (OR, 0.36; 95% CI, 0.17–0.76), and in a model adjusted for initial NIHSS score and time from symptom onset to arrival (OR, 0.28; 95% CI, 0.11–0.73). Fifty-two of 58 (89.7%) patients with MVO had an INR ≤1.7, compared with 83 of 119 (69.7%) patients without MVO. Indication for anticoagulation agent use was dichotomized into NVAF and others, and applied to the subgroup of patients with MVO. All patients with NVAF (31/31, 100%) had INR ≤1.7, while 21 of 27 of the other patients (77.8%) had INR ≤1.7.</p><p>Conclusions</p><p>Low INR at presentation in cardioembolic stroke patients during anticoagulation treatment was associated with occurrence of major vessel occlusive stroke. Presence of MVO and indications for anticoagulation may be utilized to ensure the feasibility of administration of intravenous thrombolytics.</p></div

    The predicted probability of MVO according to INR level.

    No full text
    <p>The predicted probability of MVO according to INR level.</p

    Comparison of baseline characteristics and variables according to presence of major vessel occlusion.

    No full text
    <p>Comparison of baseline characteristics and variables according to presence of major vessel occlusion.</p
    corecore