28 research outputs found
Immune Responses to Defined Plasmodium Falciparum Antigens and Disease Susceptibility in Two Subpopulations of Northern India
The aim of this study was to investigate the prevalence of naturally acquired immune response to malaria in individuals of different age groups belonging to areas of northern India, Loni PHC (LN) and Dhaulana PHC (SD) of district Ghaziabad. Plasmodium falciparum-infected erythrocyte lysate and six synthetic peptides from different stages of P. falciparum (CSP, MSP1, AMA1, RAP1, EBA175 and PfG27) were used to determine both humoral and cellular immune responses. Plasma of individual subject was also analyzed for IL-4, IL-10, IFN-γ and TNF-α level. We observed an age-wise increasing trend of immunity in these two populations. There was a significant association between the number of antibody responders and recognition of stage-specific epitopes by antibodies. Peripheral blood mononuclear cells of more than 75% of individuals proliferated in response to stimulation by all the antigens in LN area. IL-4 and IL-10 responses were significantly higher in individuals of LN Area; whereas IFN-g and TNF-a responses were higher in individuals of SD Area. It was also noticed that the frequency of responders to stage-specific antigens was higher in individuals from the LN area where the frequency of malaria was lower. The naturally acquired immune responses to P. falciparum antigens reflected the reduced risk of malaria in the study groups. The results demonstrated immunogenicity of the epitopes to P. falciparum in population of this endemic zone
Isolation and Purification of C-phycocyanin From Nostoc Muscorum (Cyanophyceae and Cyanobacteria) Exhibits Antimalarial Activity in Vitro
The phycobilin pigments are intensively fluorescent and water soluble. They are categorized into three types, such as pigments containing high, intermediate and low energies are phycoerythrins (phycoerythrocyanins), phycocyanins and allophycocyanins, respectively. Besides light harvesting, the phycobiliproteins have shown industrial and biomedical importance. Among them, C-phycocyanin (C-PC) has been considered to be the most preferred one. The present study was undertaken to evaluate the antimalarial activity of C-PC isolated from a nitrogen-fixing cyanobacterium and Nostoc muscorum. C-PC was extracted and purified by acetone extraction and ammonium sulfate precipitation and dialysis followed by amicon filtration. It was isolated as a~124 kDa water soluble protein molecule. It showed antimalarial activity in vitro against chloroquine sensitive and resistant Plasmodium falciparum strains. Inhibitory concentrations at 50%, 90% and 95% were determined as 10.27±2.79, 53.53±6.26 and 73.78±6.92 µg/ml against the chloroquine-sensitive strains; 10.37±1.43, 56.99±11.07 and 72.79±8.59 µg/ml against chloroquine resistant of Plasmodium falciparum strains. C-PC was found to have antimalarial activity even at a concentration of 3.0µg/ml. The possible mechanism might be relied on the destruction of polymerization of haemozoin by binding of C-PC with ferriprotoporphyrin-IX at the water surface of the plasma membrane
Isolation and Purification of C-phycocyanin From Nostoc Muscorum (Cyanophyceae and Cyanobacteria) Exhibits Antimalarial Activity in Vitro
The phycobilin pigments are intensively fluorescent and water soluble. They are categorized into three types, such as pigments containing high, intermediate and low energies are phycoerythrins (phycoerythrocyanins), phycocyanins and allophycocyanins, respectively. Besides light harvesting, the phycobiliproteins have shown industrial and biomedical importance. Among them, C-phycocyanin (C-PC) has been considered to be the most preferred one. The present study was undertaken to evaluate the antimalarial activity of C-PC isolated from a nitrogen-fixing cyanobacterium and Nostoc muscorum. C-PC was extracted and purified by acetone extraction and ammonium sulfate precipitation and dialysis followed by amicon filtration. It was isolated as a~124 kDa water soluble protein molecule. It showed antimalarial activity in vitro against chloroquine sensitive and resistant Plasmodium falciparum strains. Inhibitory concentrations at 50%, 90% and 95% were determined as 10.27±2.79, 53.53±6.26 and 73.78±6.92 µg/ml against the chloroquine-sensitive strains; 10.37±1.43, 56.99±11.07 and 72.79±8.59 µg/ml against chloroquine resistant of Plasmodium falciparum strains. C-PC was found to have antimalarial activity even at a concentration of 3.0µg/ml. The possible mechanism might be relied on the destruction of polymerization of haemozoin by binding of C-PC with ferriprotoporphyrin-IX at the water surface of the plasma membrane
Resveratrol Attenuates Allergic Asthma and Associated Inflammation in the Lungs Through Regulation of miRNA-34a That Targets FoxP3 in Mice
Asthma is a chronic inflammatory disease of airways mediated by T-helper 2 (Th2) cells involving complex signaling pathways. Although resveratrol has previously been shown to attenuate allergic asthma, the role of miRNA in this process has not been studied. We investigated the effect of resveratrol on ovalbumin-induced experimental allergic asthma in mice. To that end, BALB/c mice were immunized with ovalbumin (OVA) intraperitoneally followed by oral gavage of vehicle (OVA-veh) or resveratrol (100 mg/kg body) (OVA-res). On day 7, the experimental groups received intranasal challenge of OVA followed by 7 days of additional oral gavage of vehicle or resveratrol. At day 15, all mice were euthanized and bronchioalveolar fluid (BALF), serum and lung infiltrating cells were collected and analyzed. The data showed that resveratrol significantly reduced IL-5, IL-13, and TGF-β in the serum and BALF in mice with OVA-induced asthma. Also, we saw a decrease in CD3+CD4+, CD3+CD8+, and CD4+IL-4+ cells with increase in CD4+CD25+FOXP3+ cells in pulmonary inflammatory cell infiltrate in OVA-res group when compared to OVA-veh. miRNA expression arrays using lung infiltrating cells showed that resveratrol caused significant alterations in miRNA expression, specifically downregulating the expression of miR-34a. Additionally, miR-34a was found to target , as evidenced by enhanced expression of in the lung tissue. Also, transfection studies showed that miR-34a inhibitor upregulated expression while miR-34a-mimic downregulated expression. The current study suggests that resveratrol attenuates allergic asthma by downregulating miR-34a that induces increased expression of , a master regulator of Treg development and functions
Lipocalin 2 Induces Neuroinflammation and Blood-Brain Barrier Dysfunction Through Liver-Brain Axis in Murine Model of Nonalcoholic Steatohepatitis
BACKGROUND:
Recent clinical and basic research implicated a strong correlation between NAFLD/NASH phenotypes with ectopic manifestations including neuroinflammation and neurodegeneration, but the mediators and critical pathways involved are not well understood. Lipocalin 2 (Lcn2) is one of the important mediators exclusively produced in the liver and circulation during NASH pathology.
METHODS:
Using murine model of NASH, we studied the role of Lcn2 as a potent mediator of neuroinflammation and neurodegeneration in NASH pathology via the liver-brain axis. RESULTS: Results showed that high circulatory Lcn2 activated 24p3R (Lipocalin2 receptor) in the brain and induced the release of high mobility group box 1 (HMGB1) preferably from brain cells. Released HMGB1 acted as a preferential ligand to toll-like receptor 4 (TLR4) and induced oxidative stress by activation of NOX-2 signaling involving activated p65 protein of the NF-κB complex. Further, the HMGB1-derived downstream signaling cascade activated NLRP3 inflammasome and release of proinflammatory cytokines IL-6 and IL-1β from brain cells. In addition, to advance our present understanding, in vitro studies were performed in primary brain endothelial cells where results showed high circulatory Lcn2 influenced HMGB1 secretion. Mechanistically, we also showed that elevated Lcn2 level in underlying NASH might be a likely cause for induction of blood-brain barrier dysfunction since the adipokine decreased the expression of tight junction protein Claudin 5 and caused subsequent elevation of pro-inflammatory cytokines IL-6 and IL-1β.
CONCLUSION:
In conclusion, the NASH-induced brain pathology might be because of increased Lcn2-induced release of HMGB1 and accompanying neuroinflammation
Upregulation of MIR21 and Repression of GRHL3 by Leptin Mediates Sinusoidal Endothelial Injury in Experimental Nonalcoholic Steatohepatitis
Sinusoidal endothelial dysfunction (SED) has been found to be an early event in nonalcoholic steatohepatitis (NASH) progression but the molecular mechanisms underlying its causation remains elusive. We hypothesized that adipokine leptin worsens sinusoidal injury by decreasing functionally active nitric oxide synthase 3 (NOS)3 via miR21. Using rodent models of NASH, and transgenic mice lacking leptin and leptin receptor, results showed that hyperleptinemia caused a 4-5 fold upregulation of hepatic miR21 as assessed by qRTPCR. The upregulation of miR21 led to a time-dependent repression of its target protein Grhl3 levels as shown by western blot analyses. NOS3-p/NOS3 ratio which is controlled by Grhl3 was significantly decreased in NASH models. SED markers ICAM-1, VEGFR-2, and E-selectin as assessed by immunofluorescence microscopy were significantly up regulated in the progressive phases of NASH. Lack of leptin or its receptor in vivo, reversed the upregulation of miR21 and restored the levels of Grhl3 and NOS3-p/NOS3 ratio coupled with decreased SED dysfunction markers. Interestingly, leptin supplementation in mice lacking leptin, significantly enhanced miR21 levels, decreased Grhl3 repression and NOS3 phosphorylation. Leptin supplementation in isolated primary endothelial cells, Kupffer cells and stellate cells showed increased mir21 expression in stellate cells while sinusoidal injury was significantly higher in all cell types. Finally miR21 KO mice showed increased NOS3-p/NOS3 ratio and reversed SED markers in the rodent models of NASH. The experimental results described here show a close association of leptin-induced miR21 in aiding sinusoidal injury in NASH
HMGB1-RAGE Pathway Drives Peroxynitrite Signaling-Induced Ibd-Like Inflammation in Murine Nonalcoholic Fatty Liver Disease
Recent clinical studies found a strong association of colonic inflammation and Inflammatory bowel disease (IBD)-like phenotype with NonAlcoholic Fatty liver Disease (NAFLD) yet the mechanisms remain unknown. The present study identifies high mobility group box 1 (HMGB1) as a key mediator of intestinal inflammation in NAFLD and outlines a detailed redox signaling mechanism for such a pathway. NAFLD mice showed liver damage and release of elevated HMGB1 in systemic circulation and increased intestinal tyrosine nitration that was dependent on NADPH oxidase. Intestines from NAFLD mice showed higher Toll like receptor 4 (TLR4) activation and proinflammatory cytokine release, an outcome strongly dependent on the existence of NAFLD pathology and NADPH oxidase. Mechanistically intestinal epithelial cells showed the HMGB1 activation of TLR-4 was both NADPH oxidase and peroxynitrite dependent with the latter being formed by the activation of NADPH oxidase. Proinflammatory cytokine production was significantly blocked by the specific peroxynitrite scavenger phenyl boronic acid (FBA), AKT inhibition and NADPH oxidase inhibitor Apocynin suggesting NADPH oxidase-dependent peroxynitrite is a key mediator in TLR-4 activation and cytokine release via an AKT dependent pathway. Studies to ascertain the mechanism of HMGB1-mediated NADPH oxidase activation showed a distinct role of Receptor for advanced glycation end products (RAGE) as the use of inhibitors targeted against RAGE or use of deformed HMGB1 protein prevented NADPH oxidase activation, peroxynitrite formation, TLR4 activation and finally cytokine release. Thus, in conclusion the present study identifies a novel role of HMGB1 mediated inflammatory pathway that is RAGE and redox signaling dependent and helps promote ectopic intestinal inflammation in NAFLD
Host Abundance Correlates With Gulf War Illness Symptom Persistence via NLRP3-Mediated Neuroinflammation and Decreased Brain-Derived Neurotrophic Factor
Neurological disorders are commonly reported among veterans who returned from the Gulf war. Veterans who suffer from Gulf War illness (GWI) complain of continued symptom persistence that includes neurological disorders, muscle weakness, headaches, and memory loss, that developed during or shortly after the war. Our recent research showed that chemical exposure associated microbial dysbiosis accompanied by a leaky gut connected the pathologies in the intestine, liver, and brain. However, the mechanisms that caused the symptoms to persist even 30 years after the war remained elusive to investigators. In this study, we used a rodent model of GWI to investigate the persistence of microbiome alterations, resultant chronic inflammation, and its effect on neurotrophic and synaptic plasticity marker BDNF. The results showed that exposure to GW chemicals (the pesticide permethrin and prophylactic drug pyridostigmine bromide) resulted in persistent pathology characterized by the low relative abundance of the probiotic bacteria in the gut, which correlated with high circulatory HMGB1 levels, blood-brain barrier dysfunction, neuroinflammation and lowered neurotrophin BDNF levels. Mechanistically, we used mice lacking the NLRP3 gene to investigate this inflammasome\u27s role in observed pathology. These mice had significantly decreased inflammation and a subsequent increase in BDNF in the frontal cortex. This suggests that a persistently low species abundance of and associated chronic inflammation due to inflammasome activation might be playing a significant role in contributing to chronic neurological problems in GWI. A therapeutic approach with various small molecules that can target both the restoration of a healthy microbiome and decreasing inflammasome activation might have better outcomes in treating GWI symptom persistence
Gut DNA Virome Diversity and Its Association with Host Bacteria Regulate Inflammatory Phenotype and Neuronal Immunotoxicity in Experimental Gulf War Illness
Gulf War illness (GWI) is characterized by the persistence of inflammatory bowel disease, chronic fatigue, neuroinflammation, headache, cognitive impairment, and other medically unexplained conditions. Results using a murine model show that enteric viral populations especially bacteriophages were altered in GWI. The increased viral richness and alpha diversity correlated positively with gut bacterial dysbiosis and proinflammatory cytokines. Altered virome signature in GWI mice also had a concomitant weakening of intestinal epithelial tight junctions with a significant increase in Claudin-2 protein expression and decrease in ZO1 and Occludin mRNA expression. The altered virome signature in GWI, decreased tight junction protein level was followed by the presence an activation of innate immune responses such as increased Toll-like receptor (TLR) signaling pathways. The altered virome diversity had a positive correlation with serum IL-6, IL-1β, and IFN-γ, intestinal inflammation (IFN-γ), and decreased Brain-Derived Neurotrophic Factor (BDNF), a neurogenesis marker. The co-exposure of Gulf War chemical and antibiotic (for gut sterility) or Gulf War chemical and Ribavirin, an antiviral compound to suppress virus alteration in the gut showed significant improvement in epithelial tight junction protein, decreased intestinal-, systemic-, and neuroinflammation. These results showed that the observed enteric viral dysbiosis could activate enteric viral particle-induced innate immune response in GWI and could be a novel therapeutic target in GWI
The Gut-Microbiome in Gulf War Veterans: A Preliminary Report
Gulf War Illness (GWI) is a chronic multi-symptom disorder affecting the central nervous system (CNS), immune and gastrointestinal (GI) systems of Gulf War veterans (GWV). We assessed the relationships between GWI, GI symptoms, gut microbiome and inflammatory markers in GWV from the Boston Gulf War Illness Consortium (GWIC). Three groups of GWIC veterans were recruited in this pilot study; GWV without GWI and no gastrointestinal symptoms (controls), GWV with GWI and no gastrointestinal symptoms (GWI-GI), GWV with GWI who reported gastrointestinal symptoms (GW+GI). Here we report on a subset of the first thirteen stool samples analyzed. Results showed significantly different gut microbiome patterns among the three groups and within the GWI +/-GI groups. Specifically, GW controls had a greater abundance of firmicutes and the GWI+GI group had a greater abundance of the phyla bacteroidetes, actinobacteria, euryarchaeota, and proteobacteria as well as higher abundances of the families Bacteroidaceae, Erysipelotrichaceae, and Bifidobacteriaceae. The GWI+GI group also showed greater plasma levels of the inflammatory cytokine TNF-RI and they endorsed significantly more chemical weapons exposure during the war and reported significantly greater chronic pain, fatigue and sleep difficulties than the other groups. Studies with larger samples sizes are needed to confirm these initial findings