1,174 research outputs found

    The impact of stripped Nuclei on the Super-Massive Black Hole number density in the local Universe

    Get PDF
    The recent discovery of super-massive black holes (SMBHs) in the centers of high-mass ultra compact dwarf galaxies (UCDs) suggests that at least some UCDs are the stripped nuclear star clusters of lower mass galaxies. Tracing these former nuclei of stripped galaxies provides a unique way to track the assembly history of a galaxy or galaxy cluster. In this paper we present a new method to estimate how many UCDs host an SMBH in their center and thus are stripped galaxy nuclei. We revisit the dynamical mass measurements that suggest many UCDs have more mass than expected from stellar population estimates, which recent observations have shown is due to the presence of an SMBH. We revise the stellar population mass estimates using a new empirical relation between the mass-to-light ratio (M/L) and metallicity, and use this to predict which UCDs are most likely to host an SMBH. This enables us to calculate the fraction of UCDs that host SMBHs across their entire luminosity range for the first time. We then apply the SMBH occupation fraction to the observed luminosity function of UCDs and estimate that in the Fornax and Virgo cluster alone there should be 69−25+3269^{+32}_{-25} stripped nuclei with SMBHs. This analysis shows that stripped nuclei with SMBHs are almost as common in clusters as present-day galaxy nuclei. We estimate the local SMBH number density in stripped nuclei to 3−8×10−3Mpc−33-8\times10^{-3}Mpc^{-3}, which represents a significant fraction (10-40\%) of the SMBH density in the local Universe. These SMBHs hidden in stripped nuclei will increase expected event rates for tidal disruption events and SMBH-SMBH and SMBH-BH mergers. The existence of numerous stripped nuclei with SMBHs are a direct consequence of hierarchical galaxy formation, but until now their impact on the SMBH density had not been quantified.Comment: 15 pages, 8 Figures, accepted for publication in Ap

    Circumnuclear Structures in Megamaser Host Galaxies

    Full text link
    Using HST, we identify circumnuclear (100100-500500 pc scale) structures in nine new H2_2O megamaser host galaxies to understand the flow of matter from kpc-scale galactic structures down to the supermassive black holes (SMBHs) at galactic centers. We double the sample analyzed in a similar way by Greene et al. (2013) and consider the properties of the combined sample of 18 sources. We find that disk-like structure is virtually ubiquitous when we can resolve <200<200 pc scales, in support of the notion that non-axisymmetries on these scales are a necessary condition for SMBH fueling. We perform an analysis of the orientation of our identified nuclear regions and compare it with the orientation of megamaser disks and the kpc-scale disks of the hosts. We find marginal evidence that the disk-like nuclear structures show increasing misalignment from the kpc-scale host galaxy disk as the scale of the structure decreases. In turn, we find that the orientation of both the ∼100\sim100 pc scale nuclear structures and their host galaxy large-scale disks is consistent with random with respect to the orientation of their respective megamaser disks.Comment: 24 pages, 16 figures, 4 tables; Resubmitted to ApJ after referee's comment

    The Structure of Nuclear Star Clusters in Nearby Late-type Spiral Galaxies from Hubble Space Telescope Wide Field Camera 3 Imaging

    Full text link
    We obtained Hubble Space Telescope/Wide Field Camera 3 imaging of a sample of ten of the nearest and brightest nuclear clusters residing in late-type spiral galaxies, in seven bands that span the near-ultraviolet to the near-infrared. Structural properties of the clusters were measured by fitting two-dimensional surface brightness profiles to the images using GALFIT. The clusters exhibit a wide range of structural properties. For six of the ten clusters in our sample, we find changes in the effective radius with wavelength, suggesting radially varying stellar populations. In four of the objects, the effective radius increases with wavelength, indicating the presence of a younger population which is more concentrated than the bulk of the stars in the cluster. However, we find a general decrease in effective radius with wavelength in two of the objects in our sample, which may indicate extended, circumnuclear star formation. We also find a general trend of increasing roundness of the clusters at longer wavelengths, as well as a correlation between the axis ratios of the NCs and their host galaxies. These observations indicate that blue disks aligned with the host galaxy plane are a common feature of nuclear clusters in late-type galaxies, but are difficult to detect in galaxies that are close to face-on. In color-color diagrams spanning the near-UV through the near-IR, most of the clusters lie far from single-burst evolutionary tracks, showing evidence for multi-age populations. Most of the clusters have integrated colors consistent with a mix of an old population (> 1 Gyr) and a young population (~100-300 Myr). The wide wavelength coverage of our data provides a sensitivity to populations with a mix of ages that would not be possible to achieve with imaging in optical bands only.Comment: Corrected a typo in author name and affiliation for MC and corrected a typo in the conclusio

    Visual perceptual echo reflects learning of regularities in rapid luminance sequences

    Get PDF
    A novel neural signature of active visual processing has recently been described in the form of the ‘perceptual echo’, in which the cross-correlation between a sequence of randomly fluctuating luminance values and occipital electrophysiological (EEG) signals exhibits a long-lasting periodic (~100ms cycle) reverberation of the input stimulus (VanRullen & Macdonald, 2012). As yet, however, the mechanisms underlying the perceptual echo and its function remain unknown. Reasoning that natural visual signals often contain temporally predictable, though non-periodic features, we hypothesized that the perceptual echo may reflect a periodic process associated with regularity learning. To test this hypothesis, we presented subjects with successive repetitions of a rapid non-periodic luminance sequence, and examined the effects on the perceptual echo, finding that echo amplitude linearly increased with the number of presentations of a given luminance sequence. These data suggest that the perceptual echo reflects a neural signature of regularity learning. Furthermore, when a set of repeated sequences was followed by a sequence with inverted luminance polarities, the echo amplitude decreased to the same level evoked by a novel stimulus sequence. Crucially, when the original stimulus sequence was re-presented, the echo amplitude returned to a level consistent with the number of presentations of this sequence, indicating that the visual system retained sequence specific information, for many seconds, even in the presence of intervening visual input. Altogether, our results reveal a previously undiscovered regularity learning mechanism within the human visual system, reflected by the perceptual echo
    • …
    corecore