24 research outputs found

    Nitric Oxide Confers Therapeutic Activity to Dendritic Cells in a Mouse Model of Melanoma

    Get PDF
    Susceptibility of dendritic cells (DCs) to tumor-induced apoptosis reduces their efficacy in cancer therapy. Here we show that delivery within exponentially growing B16 melanomas of DCs treated ex vivo with nitric oxide (NO), released by the NO donor (z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO), significantly reduced tumor growth, with cure of 37% of animals. DETA-NO-treated DCs became resistant to tumor-induced apoptosis because DETA-NO prevented tumor-induced changes in the expression of Bcl-2, Bax, and Bcl-xL; activation of caspase-9; and a reduction in the mitochondrial membrane potential. DETA-NO also increased DC cytotoxic activity against tumor cells and DC ability to trigger T-lymphocyte proliferation. All of the effects of DETA-NO were mediated through cGMP generation. NO and NO-generating drugs may therefore be used to increase the anticancer efficacy of DCs

    Report and Abstracts of the 18th Meeting of the Interuniversity Institute of Myology: Virtual meeting, October 21-24, 2021

    No full text
    International audienceIn 2021, as the situation due to COVID-19 pandemic was still uncertain, the 18 th annual meeting of the Interuniversity Institute of Myology (IIM), took place on a virtual platform, following the same organization already tested for the previous edition. Participants from Italy, European countries, Canada and USA included clinicians, scientists, pharmaceutical companies and representatives of patient organizations. Four keynote speakers presented new insights into the modulation of muscle stem cell self-renewal in the treatment of neuromuscular disease, the role of nuclear positioning in muscle function, regeneration and tumorigenesis in the heart and advances on therapies of muscular dystrophies. Young PhD students and trainees presented oral communications distributed in five scientific sessions and posters in two poster sessions. On October 21, 2021, selected young scientists participated in the "High Training Course on Advanced Myology", organized with the University of Perugia, Italy. This course consisted of lectures on muscle regeneration and therapeutic perspectives by internationally recognized speakers, followed by roundtable discussions on "Omics technologies in myology" and "New therapeutic approaches", plus the meeting itself. Young trainees, winners of past IIM conferences, forming the Young IIM Committee, selected one of Keynote speakers and were involved in the organization of scientific sessions and roundtable discussions. The friendly welcoming of the meeting, which has strongly characterized this event and is of great help in facilitating scientific exchanges and stimulating novel collaborations, was the hallmark of the conference this year again, even on virtual platform. Breakthrough studies showing interdisciplinary works are fostering new avenues in the field of myology. This year again, scientists and students attended the meeting at the huger number, challenging the difficulties due to the COVID-19 pandemic. All participants shared the wish to continue and implement IIM meeting with new insights on muscle biology, perspectives in the understanding of the musclerelated diseases and in novel therapeutic approaches. We report here abstracts of the meeting describing basic, translational, and clinical research contributing to the large field of myology

    GDF5

    No full text
    La sarcopénie est une maladie musculaire complexe liée à l’âge qui affecte entre 10 à 16 % des personnes âgées de plus 65 ans. Elle se caractérise par une perte excessive de la masse musculaire et de la force. Malgré la multitude d’études visant à comprendre les mécanismes physiologiques qui sous-tendent cette pathologie, la physiopathologie de la sarcopénie reste encore mal comprise. A ce jour, il n’existe pas de traitement pharmacologique pour lutter contre cette pathologie. Dans ce contexte, notre équipe développe des approches thérapeutiques basées sur l’utilisation de la protéine GDF5 pour contrecarrer la perte de la masse et de la fonction musculaire dans diverses conditions pathologiques dont la sarcopénie. Après avoir décrypté un des mécanismes moléculaires régulant l’expression du GDF5, nous avons démontré le potentiel thérapeutique de cette protéine dans la préservation de la masse et la force musculaire chez les souris âgées

    In Vitro Differentiation of Mature Myofibers for Live Imaging

    No full text
    International audienceSkeletal muscles are composed of myofibers, the biggest cells in the mammalian body and one of the few syncytia. How the complex and evolutionarily conserved structures that compose it are assembled remains under investigation. Their size and physiological features often constrain manipulation and imaging applications. The culture of immortalized cell lines is widely used, but it can only replicate the early steps of differentiation. Here, we describe a protocol that enables easy genetic manipulation of myofibers originating from primary mouse myoblasts. After one week of differentiation, the myofibers display contractility, aligned sarcomeres and triads, as well as peripheral nuclei. The entire differentiation process can be followed by live imaging or immunofluorescence. This system combines the advantages of the existing ex vivo and in vitro protocols. The possibility of easy and efficient transfection as well as the ease of access to all differentiation stages broadens the potential applications. Myofibers can subsequently be used not only to address relevant developmental and cell biology questions, but also to reproduce muscle disease phenotypes for clinical applications

    New insights in CaVβ subunits: role in the regulation of gene expression and cellular homeostasis

    No full text
    International audienceThe voltage-gated calcium channels (CaVs or VGCCs) are fundamental regulators of intracellular calcium homeostasis. When electrical activity induces their activation, the influx of calcium that they mediate or their interaction with intracellular players leads to changes in intracellular Ca2+ levels which regulate many processes such as contraction, secretion and gene expression, depending on the cell type. The essential component of the pore channel is the CaVα1 subunit. However, the fine-tuning of Ca2+-dependent signals is guaranteed by the modulatory role of the auxiliary subunits β, α2δ, and γ of the CaVs. In particular, four different CaVβ proteins (CaVβ1, CaVβ2, CaVβ3, and CaVβ4) are encoded by four different genes in mammalians, each of them displaying several splice variants. Some of these isoforms have been described in regulating CaVα1 docking and stability at the membrane and controlling the channel complex's conformational changes. In addition, emerging evidences have highlighted other properties of the CaVβ subunits, independently of α1 and non-correlated to its channel or voltage sensing functions. This review summarizes the recent findings reporting novel roles of the auxiliary CaVβ subunits and in particular their direct or indirect implication in regulating gene expression in different cellular contexts

    Nuclear defects in skeletal muscle from a Dynamin 2-linked centronuclear myopathy mouse model

    No full text
    Abstract Dynamin 2 (DNM2) is a key protein of the endocytosis and intracellular membrane trafficking machinery. Mutations in the DNM2 gene cause autosomal dominant centronuclear myopathy (CNM) and a knock-in mouse model expressing the most frequent human DNM2 mutation in CNM (Knock In-Dnm2 R465W/+) develops a myopathy sharing similarities with human disease. Using isolated muscle fibres from Knock In-Dnm2 R465W/+ mice, we investigated number, spatial distribution and morphology of myonuclei. We showed a reduction of nuclear number from 20 weeks of age in Tibialis anterior muscle from heterozygous mice. This reduction is associated with a decrease in the satellite cell content in heterozygous muscles. The concomitant reduction of myonuclei number and cross-section area in the heterozygous fibres contributes to largely maintain myonuclear density and volume of myonuclear domain. Moreover, we identified signs of impaired spatial nuclear distribution including alteration of distance from myonuclei to their nearest neighbours and change in orientation of the nuclei. This study highlights reduction of number of myonuclei, a key regulator of the myofiber size, as a new pathomechanism underlying muscle atrophy in the dominant centronuclear myopathy. In addition, this study opens a new line of investigation which could prove particularly important on satellite cells in dominant centronuclear myopathy

    RhoA Is a Crucial Regulator of Myoblast Fusion

    No full text
    Satellite cells (SCs) are adult muscle stem cells that are mobilized when muscle homeostasis is perturbed. Here we show that RhoA in SCs is indispensable to have correct muscle regeneration and hypertrophy. In particular, the absence of RhoA in SCs prevents a correct SC fusion both to other RhoA-deleted SCs (regeneration context) and to growing control myofibers (hypertrophy context). We demonstrated that RhoA is dispensable for SCs proliferation and differentiation; however, RhoA-deleted SCs have an inefficient movement even if their cytoskeleton assembly is not altered. Proliferative myoblast and differentiated myotubes without RhoA display a decreased expression of Chordin, suggesting a crosstalk between these genes for myoblast fusion regulation. These findings demonstrate the importance of RhoA in SC fusion regulation and its requirement to achieve an efficient skeletal muscle homeostasis restoration

    Nitric oxide regulates oestrogen-activated signalling pathways at multiple levels through cyclic GMP-dependent recruitment of insulin receptor substrate 1.

    Get PDF
    The gaseous messenger nitric oxide (NO) contributes to biological effects of oestrogen in target tissues, including reproductive organs, bone, cardiovascular and central nervous systems. Vasodilation and anti-atherosclerotic properties of NO have been shown to play a role in these effects. The possibility that NO acts also through regulation of the signal transduction cascade triggered by oestrogen, instead, has never been investigated. To study this we have used the MCF-7 human breast cancer cell line, an established model for oestrogen signalling. Exposure of these cells to 17-beta-oestradiol (E(2)) in the presence of NO gave rise to activation of signalling events additional to those triggered by E(2) alone, namely tyrosine phosphorylation of specific proteins, including the insulin receptor substrate-1, with recruitment to this adapter of the phosphatidylinositol 3'-kinase and persistent activation of Akt (protein kinase B). Active Akt, in turn, prevented E(2) from activating p42/44 extracellular signal-regulated kinases (ERK 1/2). These effects of NO, which were mediated through generation of cyclic GMP and activation of the cGMP-dependent protein kinase I, initiated in the first minutes after administration of oestrogen. The consequences, however, were long lasting, as modulation of Akt and ERK 1/2 activities by NO was responsible for inhibition of E(2)-triggered cell growth and regulation of oestrogen responsive-element dependent gene transcription. Generation of NO is stimulated by both E(2) and growth factors known to contribute to the complex network of intracellular events regulating the biological actions of oestrogen. It is conceivable, therefore, that modulation by NO of E(2) early signalling, here described for the first time, has broad significance in regulating cellular responses to the hormone

    Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3

    No full text
    Cells actively position their nucleus within the cytoplasm. One striking example is observed during skeletal myogenesis. Differentiated myoblasts fuse to form a multinucleated myotube with nuclei positioned in the centre of the syncytium by an unknown mechanism. Here, we describe that the nucleus of a myoblast moves rapidly after fusion towards the central myotube nuclei. This movement is driven by microtubules and dynein/dynactin complex, and requires Cdc42, Par6 and Par3. We found that Par6β and dynactin accumulate at the nuclear envelope of differentiated myoblasts and myotubes, and this accumulation is dependent on Par6 and Par3 proteins but not on microtubules. These results suggest a mechanism where nuclear movement after fusion is driven by microtubules that emanate from one nucleus that are pulled by dynein/dynactin complex anchored to the nuclear envelope of another nucleus
    corecore