64 research outputs found

    Into Africa : Molecular phylogenetics and historical biogeography of sub-Saharan African woodferns (Dryopteris)

    Get PDF
    PREMISE OF THE STUDY: Our goal was to infer the phylogenetic relationships and historical biogeography of the genus Dryopteris with a focus on taxa in sub-Saharan Africa and neighboring islands. In general, little is known about the relationships between African fern species and their congeners in other geographic regions, and our aim was to determine whether the sub-Saharan African species of Dryopteris are monophyletic and evolved within Africa or arrived there via repeated dispersals into Africa from other regions. METHODS: We obtained sequence data for five chloroplast markers from 214 species of Dryopteris and 18 outgroups. We performed phylogenetic and molecular dating analyses using a Bayesian relaxed clock method in BEAST with fossil and secondary calibration points and estimated ancestral ranges for the genus globally by comparing multiple models in BioGeoBEARS. KEY RESULTS: We found that 22 of 27 accessions of sub-Saharan African Dryopteris belong to a large clade of 31 accessions that also includes taxa from Indian and Atlantic Ocean islands. Additional accessions of taxa from our regions of interest have Asian, Hawaiian, European, or North American species as their closest relatives. CONCLUSIONS: The majority of sub-Saharan African Dryopteris species are descended from a shared common ancestor that dispersed to Africa from Asia approximately 10 Ma. There have been subsequent dispersal events from the African mainland to islands in the Atlantic and Indian Oceans, including Madagascar. Several additional species are estimated to have descended from ancestors that reached Africa via separate events over the last roughly 20 million years.Peer reviewe

    The concluding chapter: Recircumscription of Goodenia (Goodeniaceae) to include four allied genera with an updated infrageneric classification

    Get PDF
    © 2020. Close scrutiny of Goodenia (Goodeniaceae) and allied genera in the \u27Core Goodeniaceae\u27 over recent years has clarified our understanding of this captivating group. While expanded sampling, sequencing of multiple regions, and a genome skimming reinforced backbone clearly supported Goodenia s.l. as monophyletic and distinct from Scaevola and Coopernookia, there appears to be no synapomorphic characters that uniquely characterise this morphologically diverse clade. Within Goodenia s.l., there is strong support from nuclear, chloroplast and mitochondrial data for three major clades (Goodenia Clades A, B and C) and various subclades, which lead to earlier suggestions for the possible recognition of these as distinct genera. Through ongoing work, it has become evident that this is impractical, as conflict remains within the most recently diverged Clade C, likely due to recent radiation and incomplete lineage sorting. In light of this, it is proposed that a combination of morphological characters is used to circumscribe an expanded Goodenia that now includes Velleia, Verreauxia, Selliera and Pentaptilon, and an updated infrageneric classification is proposed to accommodate monophyletic subclades. A total of twenty-five new combinations, three reinstatements, and seven new names are published herein including Goodenia subg. Monochila sect. Monochila subsect. Infracta K.A. Sheph. subsect. nov. Also, a type is designated for Goodenia subg. Porphyranthus sect. Ebracteolatae (K. Krause) K.A. Sheph. comb. et stat. nov., and lectotypes or secondstep lectotypes are designated for a further three names

    The C-Fern (Ceratopteris richardii) Genome: Insights Into Plant Genome Evolution With the First Partial Homosporous Fern Genome Assembly

    Get PDF
    Ferns are notorious for possessing large genomes and numerous chromosomes. Despite decades of speculation, the processes underlying the expansive genomes of ferns are unclear, largely due to the absence of a sequenced homosporous fern genome. The lack of this crucial resource has not only hindered investigations of evolutionary processes responsible for the unusual genome characteristics of homosporous ferns, but also impeded synthesis of genome evolution across land plants. Here, we used the model fern species Ceratopteris richardii to address the processes (e.g., polyploidy, spread of repeat elements) by which the large genomes and high chromosome numbers typical of homosporous ferns may have evolved and have been maintained. We directly compared repeat compositions in species spanning the green plant tree of life and a diversity of genome sizes, as well as both short- and long-read-based assemblies of Ceratopteris. We found evidence consistent with a single ancient polyploidy event in the evolutionary history of Ceratopteris based on both genomic and cytogenetic data, and on repeat proportions similar to those found in large flowering plant genomes. This study provides a major stepping-stone in the understanding of land plant evolutionary genomics by providing the first homosporous fern reference genome, as well as insights into the processes underlying the formation of these massive genomes

    Sex and the Single Gametophyte: Revising the Homosporous Vascular Plant Life Cycle in Light of Contemporary Research

    Get PDF
    Homosporous vascular plants are typically depicted as extreme inbreeders, with bisexual gametophytes that produce strictly homozygous sporophytes. This view is promulgated in textbook life cycles despite ample evidence that natural populations of most species regularly outcross. We review research on a variety of mechanisms, including genetic load, asynchronous production of eggs and sperm, and pheromonal control of gamete production, that actively promote heterozygosity in ferns and lycophytes. Evolution of the land plants cannot be reconstructed without accurate depictions of the unique life cycle that has helped make ferns the second most diverse lineage of vascular plants on Earth. With revised illustrations and definitions, we provide scientists, educators, and students with a contemporary understanding of fern and lycophyte reproduction, revealing them as evolutionarily dynamic and exploiting a wide range of mating systems

    Raw data from the study: character expression, reproductive barriers and origin of the rare fern hybrid Asplenium × aran-tohanum (Aspleniaceae)

    Get PDF
    In this work, we provide the raw data supporting the results of the study about character expression, reproductive barriers and origin of the rare fern hybrid Asplenium ×arantohanum (Aspleniaceae). The data contributed refers to the variables used in the statistical analyses. Basic methodology is also given

    An Exploration into Fern Genome Space

    Get PDF
    Ferns are one of the few remaining major clades of land plants for which a complete genome sequence is lacking. Knowledge of genome space in ferns will enable broad-­‐scale comparative analyses of land plant genes and genomes, provide insights into genome evolution across green plants, and shed light on genetic and genomic features that characterize ferns, such as their high chromosome numbers and large genome sizes. As part of an initial exploration into fern genome space, we used a whole genome shotgun sequencing approach to obtain low-­‐density coverage (~0.4X to 2X) for six fern species from the Polypodiales (Ceratopteris, Pteridium, Polypodium, Cystopteris), Cyatheales (Plagiogyria), and Gleicheniales (Dipteris). We explore these data to characterize the proportion of the nuclear genome represented by repetitive sequences (including DNA transposons, retrotransposons, rDNA, and simple repeats) and protein-­‐coding genes, and to extract chloroplast and mitochondrial genome sequences. Such initial sweeps of fern genomes can provide information useful for selecting a promising candidate fern species for whole genome sequencing. We also describe variation of genomic traits across our sample and highlight some differences and similarities in repeat structure between ferns and seed plants

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF
    corecore