16 research outputs found

    Correlation of prostatic artery blood flow assessed by doppler ultrasonography with semen characteristics in beagle dogs

    Get PDF
    Pulsed-wave Doppler ultrasonography (PwD) is a method used to rapidly and noninvasively assess blood flow dynamics of the canine prostate. Modifications in gland vascularization can affect seminal plasma production and consequently sperm quality. The aim of this study was to determine the normal blood flow parameters of the prostate artery in beagle dogs and to analyze the correlations between vascular flow and semen quality characteristics. PwD was performed on five beagle dogs (5–6 years) measuring vascular features in four different locations of the prostatic artery (cranial, subcapsular, parenchymal and caudal); the measured features were peak systolic velocity (PSV), end-diastolic velocity (EDV), resistive index (RI) and pulsatility index (PI). Ejaculates were obtained using digital manipulation and semen quality was evaluated by determining macroscopic (total volume, sperm-rich fraction volume, color and pH) and microscopic (sperm motility, morphology, viability and acrosome integrity) characteristics. The values of PSV, PI and RI in cranial and caudal prostatic arteries were significantly higher than in subcapsular and parenchymal arteries (p < 0.05). Moreover. a positive correlation of PSV value in the cranial region of the prostatic artery with total ejaculate volume (p < 0.01, r = 0.612) and sperm concentration (p < 0.01, r = 0.587) was determined. PI index was negatively correlated with sperm concentration (p < 0.01, r = -0.709). In conclusion. the results suggest that the prostatic artery blood flow parameters can affect macroscopic semen quality characteristics in healthy dogs

    Altered myogenesis and premature senescence underlie human TRIM32-related myopathy

    Get PDF
    TRIM32 is a E3 ubiquitin -ligase containing RING, B-box, coiled-coil and six C-terminal NHL domains. Mutations involving NHL and coiled-coil domains result in a pure myopathy (LGMD2H/STM) while the only described mutation in the B-box domain is associated with a multisystemic disorder without myopathy (Bardet-Biedl syndrome type11), suggesting that these domains are involved in distinct processes. Knock-out (T32KO) and knockin mice carrying the c.1465G > A (p.D489N) involving the NHL domain (T32KI) show alterations in muscle regrowth after atrophy and satellite cells senescence. Here, we present phenotypical description and functional characterization of mutations in the RING, coiled-coil and NHL domains of TRIM32 causing a muscle dystrophy. Reduced levels of TRIM32 protein was observed in all patient muscle studied, regardless of the type of mutation (missense, single amino acid deletion, and frameshift) or the mutated domain. The affected patients presented with variable phenotypes but predominantly proximal weakness. Two patients had symptoms of both muscular dystrophy and Bardet-Biedl syndrome. The muscle magnetic resonance imaging (MRI) pattern is highly variable among patients and families. Primary myoblast culture from these patients demonstrated common findings consistent with reduced proliferation and differentiation, diminished satellite cell pool, accelerated senescence of muscle, and signs of autophagy activation.Health Institute Carlos III PI16-01843 JR15/00042FEDER PI16-01843 JR15/00042Fundación Progreso y Salud, Junta de Andalucía PI-0085-2016Australian National Health and Medical Research Council (NHMRC) APP1122952 APP111751

    Altered myogenesis and premature senescence underlie human TRIM32-related myopathy

    Get PDF
    TRIM32 is a E3 ubiquitin -ligase containing RING, B-box, coiled-coil and six C-terminal NHL domains. Mutations involving NHL and coiled-coil domains result in a pure myopathy (LGMD2H/STM) while the only described mutation in the B-box domain is associated with a multisystemic disorder without myopathy (Bardet-Biedl syndrome type11), suggesting that these domains are involved in distinct processes. Knock-out (T32KO) and knockin mice carrying the c.1465G > A (p.D489N) involving the NHL domain (T32KI) show alterations in muscle regrowth after atrophy and satellite cells senescence. Here, we present phenotypical description and functional characterization of mutations in the RING, coiled-coil and NHL domains of TRIM32 causing a muscle dystrophy. Reduced levels of TRIM32 protein was observed in all patient muscle studied, regardless of the type of mutation (missense, single amino acid deletion, and frameshift) or the mutated domain. The affected patients presented with variable phenotypes but predominantly proximal weakness. Two patients had symptoms of both muscular dystrophy and Bardet-Biedl syndrome. The muscle magnetic resonance imaging (MRI) pattern is highly variable among patients and families. Primary myoblast culture from these patients demonstrated common findings consistent with reduced proliferation and differentiation, diminished satellite cell pool, accelerated senescence of muscle, and signs of autophagy activation.Health Institute Carlos III PI16-01843 JR15/00042FEDER PI16-01843 JR15/00042Fundación Progreso y Salud, Junta de Andalucía PI-0085-2016Australian National Health and Medical Research Council (NHMRC) APP1122952 APP111751

    Heterozygous CAPN3 missense variants causing autosomal-dominant calpainopathy in seven unrelated families

    Get PDF
    [Aims] Recessive variants in CAPN3 gene are the cause of the commonest form of autosomal recessive limb girdle muscle dystrophy. However, two distinct in-frame deletions in CAPN3 (NM_000070.3:c.643_663del21 and c.598_621del15) and more recently, Gly445Arg and Arg572Pro substitutions have been linked to autosomal dominant (AD) forms of calpainopathy. We report 21 affected individuals from seven unrelated families presenting with an autosomal dominant form of muscular dystrophy associated with five different heterozygous missense variants in CAPN.[Methods] We have used massively parallel gene sequencing (MPS) to determine the genetic basis of a dominant form of limb girdle muscular dystrophy in affected individuals from seven unrelated families.[Results] The c.700G> A, [p.(Gly234Arg)], c.1327T> C [p.(Ser443Pro], c.1333G> A [p.(Gly445Arg)], c.1661A> C [p.(Tyr554Ser)] and c.1706T> C [p.(Phe569Ser)] CAPN3 variants were identified. Affected individuals presented in young adulthood with progressive proximal and axial weakness, waddling walking and scapular winging or with isolated hyperCKaemia. Muscle imaging showed fatty replacement of paraspinal muscles, variable degrees of involvement of the gluteal muscles, and the posterior compartment of the thigh and minor changes at the mid-leg level. Muscle biopsies revealed mild myopathic changes. Western blot analysis revealed a clear reduction in calpain 3 in skeletal muscle relative to controls. Protein modelling of these variants on the predicted structure of calpain 3 revealed that all variants are located in proximity to the calmodulin-binding site and are predicted to interfere with proteolytic activation.[Conclusions] We expand the genotypic spectrum of CAPN3-associated muscular dystrophy due to autosomal dominant missense variants.This study was funded in part by Instituto de Salud Carlos III through the project PI14/00738 to M. O. (co-funded by European Regional Development Fund. ERDF, a way to build Europe). We thank CERCA Programme / Generalitat de Catalunya for institutional support NGL (APP1117510) and GR (APP1122952) are supported by the Australian National Health and Medical Research Council (NHMRC). This work is also funded by an NHMRC Project Grant (APP1080587).Peer reviewe

    Presenilin/γ-Secretase Regulates Neurexin Processing at Synapses

    Get PDF
    Neurexins are a large family of neuronal plasma membrane proteins, which function as trans-synaptic receptors during synaptic differentiation. The binding of presynaptic neurexins to postsynaptic partners, such as neuroligins, has been proposed to participate in a signaling pathway that regulates synapse formation/stabilization. The identification of mutations in neurexin genes associated with autism and mental retardation suggests that dysfunction of neurexins may underlie synaptic defects associated with brain disorders. However, the mechanisms that regulate neurexin function at synapses are still unclear. Here, we show that neurexins are proteolytically processed by presenilins (PS), the catalytic components of the γ-secretase complex that mediates the intramembraneous cleavage of several type I membrane proteins. Inhibition of PS/γ-secretase by using pharmacological and genetic approaches induces a drastic accumulation of neurexin C-terminal fragments (CTFs) in cultured rat hippocampal neurons and mouse brain. Neurexin-CTFs accumulate mainly at the presynaptic terminals of PS conditional double knockout (PS cDKO) mice lacking both PS genes in glutamatergic neurons of the forebrain. The fact that loss of PS function enhances neurexin accumulation at glutamatergic terminals mediated by neuroligin-1 suggests that PS regulate the processing of neurexins at glutamatergic synapses. Interestingly, presenilin 1 (PS1) is recruited to glutamatergic terminals mediated by neuroligin-1, thus concentrating PS1 at terminals containing β-neurexins. Furthermore, familial Alzheimer's disease (FAD)-linked PS1 mutations differentially affect β-neurexin-1 processing. Expression of PS1 M146L and PS1 H163R mutants in PS−/− cells rescues the processing of β-neurexin-1, whereas PS1 C410Y and PS1 ΔE9 fail to rescue the processing defect. These results suggest that PS regulate the synaptic function and processing of neurexins at glutamatergic synapses, and that impaired neurexin processing by PS may play a role in FAD

    Papel de la proteína de adhesión sináptica neurexina 1 en autismo

    Get PDF
    1 página. IX Jornadas Andaluzas Salud Investiga. Cádiz 20-22 octubre, 2010.El Trastorno del Espectro Autista (TEA) es un conjunto de síndromes del desarrollo que se caracterizan por déficit en la interacción social, comunicación restringida y comportamientos estereotipados. Hasta un 70% de los casos están asociados a retraso mental. La mayor parte de los casos de TEA se enmarcan dentro de las enfermedades complejas, causadas por la combinación de alelos de susceptibilidad y factores ambientales. Se han identificado mutaciones y variaciones estructurales en genes que codifican proteínas sinápticas, como las neurexinas, que podrían incrementar el riesgo a desarrollar la enfermedad. Los objetivos de nuestro estudio son entender el mecanismo de acción de neurexina-1 beta (NRXN1β) en el desarrollo del TEA.Peer reviewe

    A novel MYH7 founder mutation causing Laing distal myopathy in Southern Spain.

    No full text
    MYH7 gene mutations are associated with wide clinical and genetic heterogeneity. We report a novel founder mutation in MYH7 in Southern Spain (Andalucía). We studied two index patients and 24 family members from two apparently independent families by physical examination, serum creatine-kinase, muscle MRI, sequencing studies and genetic linkage analysis. Sixteen individuals were heterozygous for a (p.R1560P) variant in the MYH7 gene. Haplotype was consistent with a common ancestor for the two families. The patients displayed the classic Laing distal myopathy phenotype, with hanging first toe as the initial presentation, even in mildly affected patients who declared themselves asymptomatic, although neck flexor weakness was revealed as an early sign in some cases. MRI showed that the sartorius was the first muscle involved, even in two out of three asymptomatic carriers. Our findings support the novel variant p.R1560P in MYH7 as a founder mutation in Andalucía. The early involvement of the sartorius muscle in MRI may be useful as an indicator of affection status

    POGLUT1 biallelic mutations cause myopathy with reduced satellite cells, α-dystroglycan hypoglycosylation and a distinctive radiological pattern.

    No full text
    Protein O-glucosyltransferase 1 (POGLUT1) activity is critical for the Notch signaling pathway, being one of the main enzymes responsible for the glycosylation of the extracellular domain of Notch receptors. A biallelic mutation in the POGLUT1 gene has been reported in one family as the cause of an adult-onset limb-girdle muscular dystrophy (LGMD R21; OMIM# 617232). As the result of a collaborative international effort, we have identified the first cohort of 15 patients with LGMD R21, from nine unrelated families coming from different countries, providing a reliable phenotype-genotype and mechanistic insight. Patients carrying novel mutations in POGLUT1 all displayed a clinical picture of limb-girdle muscle weakness. However, the age at onset was broadened from adult to congenital and infantile onset. Moreover, we now report that the unique muscle imaging pattern of "inside-to-outside" fatty degeneration observed in the original cases is indeed a defining feature of POGLUT1 muscular dystrophy. Experiments on muscle biopsies from patients revealed a remarkable and consistent decrease in the level of the NOTCH1 intracellular domain, reduction of the pool of satellite cells (SC), and evidence of α-dystroglycan hypoglycosylation. In vitro biochemical and cell-based assays suggested a pathogenic role of the novel POGLUT1 mutations, leading to reduced enzymatic activity and/or protein stability. The association between the POGLUT1 variants and the muscular phenotype was established by in vivo experiments analyzing the indirect flight muscle development in transgenic Drosophila, showing that the human POGLUT1 mutations reduced its myogenic activity. In line with the well-known role of the Notch pathway in the homeostasis of SC and muscle regeneration, SC-derived myoblasts from patients' muscle samples showed decreased proliferation and facilitated differentiation. Together, these observations suggest that alterations in SC biology caused by reduced Notch1 signaling result in muscular dystrophy in LGMD R21 patients, likely with additional contribution from α-dystroglycan hypoglycosylation. This study settles the muscular clinical phenotype linked to POGLUT1 mutations and establishes the pathogenic mechanism underlying this muscle disorder. The description of a specific imaging pattern of fatty degeneration and muscle pathology with a decrease of α-dystroglycan glycosylation provides excellent tools which will help diagnose and follow up LGMD R21 patients

    POGLUT1 biallelic mutations cause myopathy with reduced satellite cells, α-dystroglycan hypoglycosylation and a distinctive radiological pattern

    No full text
    Protein O-glucosyltransferase 1 (POGLUT1) activity is critical for the Notch signaling pathway, being one of the main enzymes responsible for the glycosylation of the extracellular domain of Notch receptors. A biallelic mutation in the POGLUT1 gene has been reported in one family as the cause of an adult-onset limb-girdle muscular dystrophy (LGMD R21; OMIM# 617232). As the result of a collaborative international effort, we have identified the first cohort of 15 patients with LGMD R21, from nine unrelated families coming from different countries, providing a reliable phenotype–genotype and mechanistic insight. Patients carrying novel mutations in POGLUT1 all displayed a clinical picture of limb-girdle muscle weakness. However, the age at onset was broadened from adult to congenital and infantile onset. Moreover, we now report that the unique muscle imaging pattern of “inside-to-outside” fatty degeneration observed in the original cases is indeed a defining feature of POGLUT1 muscular dystrophy. Experiments on muscle biopsies from patients revealed a remarkable and consistent decrease in the level of the NOTCH1 intracellular domain, reduction of the pool of satellite cells (SC), and evidence of α-dystroglycan hypoglycosylation. In vitro biochemical and cell-based assays suggested a pathogenic role of the novel POGLUT1 mutations, leading to reduced enzymatic activity and/or protein stability. The association between the POGLUT1 variants and the muscular phenotype was established by in vivo experiments analyzing the indirect flight muscle development in transgenic Drosophila, showing that the human POGLUT1 mutations reduced its myogenic activity. In line with the well-known role of the Notch pathway in the homeostasis of SC and muscle regeneration, SC-derived myoblasts from patients’ muscle samples showed decreased proliferation and facilitated differentiation. Together, these observations suggest that alterations in SC biology caused by reduced Notch1 signaling result in muscular dystrophy in LGMD R21 patients, likely with additional contribution from α-dystroglycan hypoglycosylation. This study settles the muscular clinical phenotype linked to POGLUT1 mutations and establishes the pathogenic mechanism underlying this muscle disorder. The description of a specific imaging pattern of fatty degeneration and muscle pathology with a decrease of α-dystroglycan glycosylation provides excellent tools which will help diagnose and follow up LGMD R21 patients.This work was supported in part by the Instituto de Salud Carlos III and FEDER (FIS PI16-01843 to C. Paradas and JR15/00042 to M. Cabrera-Serrano), the Consejería de Salud, Junta de Andalucía (PI-0085-2016 and PE-S1275 to C. Paradas, and B-0005-2017 to M. Cabrera-Serrano), NIH/NIGMS (R01GM084135 and R35GM130317 to H. Jafar-Nejad, and R01GM061126 to R.S. Haltiwanger), JSPS KAKENHI Grants-in-Aid for Research Activity Start-up and Scientific Research (B) (JP17H06743 and JP19H03176 to H. Takeuchi), and Takeda Science Foundation and Daiichi Sankyo Foundation of Life Science (to H. Takeuchi). MYO-SEQ has been supported by Sanofi Genzyme, Ultragenyx, the LGMD2I Research Fund, Samantha J Brazzo Foundation, LGMD2D Foundation, Kurt + Peter Foundation, Muscular Dystrophy UK and Coalition to Cure Calpain 3. Work in CGB’s group is supported by NINDS/NIH intramural funds
    corecore