7 research outputs found

    Augmented Reality to Improve Surgical Workflow in Minimally Invasive Transforaminal Lumbar Interbody Fusion – A Feasibility Study With Case Series

    Get PDF
    Objective Minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) is a highly reproducible procedure for the fusion of spinal segments. We recently introduced the concept of “total navigation” to improve workflow and eliminate fluoroscopy. Image-guided surgery incorporating augmented reality (AR) may further facilitate workflow. In this study, we developed and evaluated a protocol to integrate AR into the workflow of MIS-TLIF. Methods A case series of 10 patients was the basis for the evaluation of a protocol to facilitate tubular MIS-TLIF by the application of AR. Surgical TLIF landmarks were marked on a preoperative computed tomography (CT)-scan using dedicated software. This marked CT scan was fused intraoperatively with the low-dose navigation CT scan using elastic image fusion, and the markers were transferred to the intraoperative scan. Our experience with this workflow and the surgical outcomes were collected. Results Our AR protocol was safely implemented in all cases. The TLIF landmarks could be preoperatively planned and transferred to the intraoperative imaging. Of the 10 cases, 1 case had additionally a synovial cyst resection and in 2 cases an additional bony decompression was performed due to central stenosis. The average procedure time was 160.6±31.9 minutes. The AR implementation added 1.72±0.37 minutes to the overall procedure time. No complications occurred. Conclusion Our findings support the idea that total navigation with AR may further facilitate the workflow, especially in cases with more complex anatomy and for teaching and training purposes. More work is needed to simplify the software and make AR integration more user-friendly

    Intraoperative image guidance for cervical spine surgery

    Get PDF
    Intraoperative image-guidance in spinal surgery has been influenced by various technological developments in imaging science since the early 1990s. The technology has evolved from simple fluoroscopic-based guidance to state-of-art intraoperative computed tomography (iCT)-based navigation systems. Although the intraoperative navigation is more commonly used in thoracolumbar spine surgery, this newer imaging platform has rapidly gained popularity in cervical approaches. The purpose of this manuscript is to address the applications of advanced image-guidance in cervical spine surgery and to describe the use of intraoperative neuro-navigation in surgical planning and execution. In this review, we aim to cover the following surgical techniques: anterior cervical approaches, atlanto-axial fixation, subaxial instrumentation, percutaneous interfacet cage implantation as well as minimally invasive posterior cervical foraminotomy (PCF) and unilateral laminotomy for bilateral decompression. The currently available data suggested that the use of 3D navigation significantly reduces the screw malposition, operative time, mean blood loss, radiation exposure, and complication rates in comparison to the conventional fluoroscopic-guidance. With the advancements in technology and surgical techniques, 3D navigation has potential to replace conventional fluoroscopy completely

    Feasibility of smart glasses in supporting spinal surgical procedures in low- and middle-income countries: experiences from East Africa.

    No full text
    OBJECTIVE: Telemedicine technology has been developed to allow surgeons in countries with limited resources to access expert technical guidance during surgical procedures. The authors report their initial experience using state-of-the-art wearable smart glasses with wireless capability to transmit intraoperative video content during spine surgery from sub-Saharan Africa to experts in the US. METHODS: A novel smart glasses system with integrated camera and microphone was worn by a spine surgeon in Dar es Salaam, Tanzania, during 3 scoliosis correction surgeries. The images were transmitted wirelessly through a compatible software system to a computer viewed by a group of fellowship-trained spine surgeons in New York City. Visual clarity was determined using a modified Snellen chart, and a percentage score was determined on the smallest line that could be read from the 8-line chart on white and black backgrounds. A 1- to 5-point scale (from 1 = unrecognizable to 5 = optimal clarity) was used to score other visual metrics assessed using a color test card including hue, contrast, and brightness. The same scoring system was used by the group to reach a consensus on visual quality of 3 intraoperative points including instruments, radiographs (ability to see pedicle screws relative to bony anatomy), and intraoperative surgical field (ability to identify bony landmarks such as transverse processes, pedicle screw starting point, laminar edge). RESULTS: All surgeries accomplished the defined goals safely with no intraoperative complications. The average download and upload connection speeds achieved in Dar es Salaam were 45.21 and 58.89 Mbps, respectively. Visual clarity with the modified white and black Snellen chart was 70.8% and 62.5%, respectively. The average scores for hue, contrast, and brightness were 2.67, 3.33, and 2.67, respectively. Visualization quality of instruments, radiographs, and intraoperative surgical field were 3.67, 1, and 1, respectively. CONCLUSIONS: Application of smart glasses for telemedicine offers a promising tool for surgical education and remote training, especially in low- and middle-income countries. However, this study highlights some limitations of this technology, including optical resolution, intraoperative lighting, and internet connection challenges. With continued collaboration between clinicians and industry, future iterations of smart glasses technology will need to address these issues to stimulate robust clinical utilization
    corecore