76 research outputs found

    Ferulic acid metabolites attenuate lps-induced inflammatory response in enterocyte-like cells

    Get PDF
    Ferulic acid (FA) is a polyphenol pertaining to the class of hydroxycinnamic acids present in numerous foods of a plant origin. Its dietary consumption leads to the formation of several phase I and II metabolites in vivo, which represent the largest amount of ferulates in the circulation and in the intestine in comparison with FA itself. In this work, we evaluated their efficacy against the proinflam-matory effects induced by lipopolysaccharide (LPS) in intestinal Caco-2 cell monolayers, as well as the mechanisms underlying their protective action. LPS-induced overexpression of proinflammatory enzymes such as inducible nitric oxide synthase (iNOS) and the consequent hyperproduction of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) were limited by physiological relevant concentrations (1 µM) of FA, its derivatives isoferulic acid (IFA) and dihydroferulic acid (DHFA), and their glucuronidated and sulfated metabolites, which acted upstream by limiting the activation of MAPK p38 and ERK and of Akt kinase, thus decreasing the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) translocation into the nucleus. Furthermore, the compounds were found to promote the expression of Nrf2, which may have contributed to the downregulation of NF-kB activity. The overall data show that phase I/II metabolites retain the efficacy of their dietary free form in contrasting inflammatory response

    Modulatory effect of nicotinic acid on the metabolism of Caco-2 cells exposed to IL-1β and LPS

    Get PDF
    Inflammatory bowel diseases (IBD) are the most common gastrointestinal inflammatory pathologies. Previous work evidenced a lower content of nicotinic acid (NA) in feces of IBD patients compared to healthy subjects. In the present study, we aimed to understand the effects of NA on intestinal inflammation, as several studies reported its possible beneficial effect, and investigate its influence on inflammation-driven metabolism. NA was tested on a Caco-2 in-vitro model in which inflammation was induced with interleukin-1β (IL-1β) and lipopolysaccharide (LPS), two mayor proinflammatory compounds produced in IBD, that stimulate the production of cytokines, such as interleukin 8. A metabolomics approach, with gas chromatography–mass spectrometry (GC-MS) and nuclear proton magnetic resonance (1H-NMR), was applied to study the metabolic changes. The results showed that NA significantly reduced the level of IL-8 produced in both LPS and IL-1β stimulated cells, confirming the anti-inflammatory effect of NA also on intestinal inflammation. Moreover, it was demonstrated that NA treatment had a restoring effect on several metabolites whose levels were modified by treatments with IL-1β or LPS. This study points out a possible use of NA as anti-inflammatory compound and might be considered as a promising starting point in understanding the beneficial effect of NA in IBD

    Design, synthesis, and antiviral activities of new benzotriazole-based derivatives

    Get PDF
    Several human diseases are caused by enteroviruses and are currently clinically untreatable, pushing the research to identify new antivirals. A notable number of benzo[d][1,2,3]triazol-1(2)-yl derivatives were designed, synthesized, and in vitro evaluated for cytotoxicity and antiviral activity against a wide spectrum of RNA positive- and negative-sense viruses. Five of them (11b, 18e, 41a, 43a, 99b) emerged for their selective antiviral activity against Coxsackievirus B5, a human enteroviruses member among the Picornaviridae family. The EC50 values ranged between 6 and 18.5 μM. Among all derivatives, compounds 18e and 43a were interestingly active against CVB5 and were selected to better define the safety profile on cell monolayers by transepithelial resistance test (TEER). Results indicated compound 18e as the hit compound to investigate the potential mechanism of action by apoptosis assay, virucidal activity test, and the time of addition assay. CVB5 is known to be cytotoxic by inducing apoptosis in infected cells; in this study, compound 18e was proved to protect cells from viral infection. Notably, cells were mostly protected when pre-treated with derivative 18e, which had, however, no virucidal activity. From the performed biological assays, compound 18e turned out to be non-cytotoxic as well as cell protective against CVB5 infection, with a mechanism of action ascribable to an interaction on the early phase of infection, by hijacking the viral attachment process

    USE OF GAS CHROMATOGRAPHY ORAL CHROMA™ IN THE ASSESSMENT OF VOLATILE SULFUR COMPOUNDS FOR BREATH’S ANALYSIS IN ORAL AND GASTRIC AFFECTION

    Get PDF
    Introduction: Breathomics (Breath-based metabolomics) is a new biotechnology approach that allow us to diagnose some human diseases by the oral breath analysis.The method is based on the identi#cation and quanti#cation of volatile organic compound (VOC) in breath, by a new portable gas chromatography’s tools such as Oral Chroma®. This instrument is able to detect and quantify three different volatile sulfur compounds, VSC ( H2S, CH3S ,(CH3)2S) in 5 ml of oral breath, in fast time and with good analytical accuracy. In addition, different authors recently have been described as a comparative analysis of VSC could be useful in the diagnosis of different oral or systemic diseases such as: (i) oral tongue halitosis or/and gastric affection such as Helicobacter pylori infectio

    Information heat engine: converting information to energy by feedback control

    Full text link
    In 1929, Leo Szilard invented a feedback protocol in which a hypothetical intelligence called Maxwell's demon pumps heat from an isothermal environment and transduces it to work. After an intense controversy that lasted over eighty years; it was finally clarified that the demon's role does not contradict the second law of thermodynamics, implying that we can convert information to free energy in principle. Nevertheless, experimental demonstration of this information-to-energy conversion has been elusive. Here, we demonstrate that a nonequilibrium feedback manipulation of a Brownian particle based on information about its location achieves a Szilard-type information-energy conversion. Under real-time feedback control, the particle climbs up a spiral-stairs-like potential exerted by an electric field and obtains free energy larger than the amount of work performed on it. This enables us to verify the generalized Jarzynski equality, or a new fundamental principle of "information-heat engine" which converts information to energy by feedback control.Comment: manuscript including 7 pages and 4 figures and supplementary material including 6 pages and 8 figure

    An experimentally-achieved information-driven Brownian motor shows maximum power at the relaxation time

    Get PDF
    We present an experimental realization of an information-driven Brownian motor by periodically cooling a Brownian particle trapped in a harmonic potential connected to a single heat bath, where cooling is carried out by the information process consisting of measurement and feedback control. We show that the random motion of the particle is rectified by symmetry-broken feedback cooling where the particle is cooled only when it resides on the specific side of the potential center at the instant of measurement. Studying how the motor thermodynamics depends on cycle period tau relative to the relaxation time tau(B) of the Brownian particle, we find that the ratcheting of thermal noise produces the maximum work extraction when tau >= 5 tau(B) while the extracted power is maximum near tau= tau(B), implying the optimal operating time for the ratcheting process. In addition, we find that the average transport velocity is monotonically decreased as tau increases and present the upper bound for the velocity

    An autonomous chemically fuelled small-molecule motor

    Get PDF
    Molecular machines are among the most complex of all functional molecules and lie at the heart of nearly every biological process. A number of synthetic small-molecule machines have been developed, including molecular muscles, synthesizers, pumps, walkers, transporters and light-driven and electrically driven rotary motors. However, although biological molecular motors are powered by chemical gradients or the hydrolysis of adenosine triphosphate (ATP), so far there are no synthetic small-molecule motors that can operate autonomously using chemical energy (that is, the components move with net directionality as long as a chemical fuel is present). Here we describe a system in which a small molecular ring (macrocycle) is continuously transported directionally around a cyclic molecular track when powered by irreversible reactions of a chemical fuel, 9-fluorenylmethoxycarbonyl chloride. Key to the design is that the rate of reaction of this fuel with reactive sites on the cyclic track is faster when the macrocycle is far from the reactive site than when it is near to it. We find that a bulky pyridine-based catalyst promotes carbonate-forming reactions that ratchet the displacement of the macrocycle away from the reactive sites on the track. Under reaction conditions where both attachment and cleavage of the 9-fluorenylmethoxycarbonyl groups occur through different processes, and the cleavage reaction occurs at a rate independent of macrocycle location, net directional rotation of the molecular motor continues for as long as unreacted fuel remains. We anticipate that autonomous chemically fuelled molecular motors will find application as engines in molecular nanotechnology.</p

    Description of quantum coherence in thermodynamic processes requires constraints beyond free energy

    Get PDF
    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement
    corecore