12 research outputs found

    Inhibition of Asaia in adult mosquitoes causes male-specific mortality and diverse transcriptome changes

    Get PDF
    Mosquitoes can transmit many infectious diseases, such as malaria, dengue, Zika, yellow fever, and lymphatic filariasis. Current mosquito control strategies are failing to reduce the severity of outbreaks that still cause high human morbidity and mortality worldwide. Great expectations have been placed on genetic control methods. Among other methods, genetic modification of the bacteria colonizing different mosquito species and expressing anti-pathogen molecules may represent an innovative tool to combat mosquito-borne diseases. Nevertheless, this emerging approach, known as paratransgenesis, requires a detailed understanding of the mosquito microbiota and an accurate characterization of selected bacteria candidates. The acetic acid bacteria Asaia is a promising candidate for paratransgenic approaches. We have previously reported that Asaia symbionts play a beneficial role in the normal development of Anopheles mosquito larvae, but no study has yet investigated the role(s) of Asaia in adult mosquito biology. Here we report evidence on how treatment with a highly specific anti-Asaia monoclonal antibody impacts the survival and physiology of adult Anopheles stephensi mosquitoes. Our findings offer useful insight on the role of Asaia in several physiological systems of adult mosquitoes, where the influence differs between males and females

    Molecular characterization and evolution of a gene family encoding male-specific reproductive proteins in the African malaria vector Anopheles gambiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During copulation, the major Afro-tropical malaria vector <it>Anopheles gambiae </it>s.s. transfers male accessory gland (MAG) proteins to females as a solid mass (i.e. the "mating plug"). These proteins are postulated to function as important modulators of female post-mating responses. To understand the role of selective forces underlying the evolution of these proteins in the <it>A. gambiae </it>complex, we carried out an evolutionary analysis of gene sequence and expression divergence on a pair of paralog genes called <it>AgAcp34A-1 </it>and <it>AgAcp34A-2</it>. These encode MAG-specific proteins which, based on homology with <it>Drosophila</it>, have been hypothesized to play a role in sperm viability and function.</p> <p>Results</p> <p>Genetic analysis of 6 species of the <it>A. gambiae </it>complex revealed the existence of a third paralog (68-78% of identity), that we named <it>AgAcp34A-3</it>. FISH assays showed that this gene maps in the same division (34A) of chromosome-3R as the other two paralogs. In particular, immuno-fluorescence assays targeting the C-terminals of <it>AgAcp34A-2 </it>and <it>AgAcp34A-3 </it>revealed that these two proteins are localized in the posterior part of the MAG and concentrated at the apical portion of the mating plug. When transferred to females, this part of the plug lies in proximity to the duct connecting the spermatheca to the uterus, suggesting a potential role for these proteins in regulating sperm motility. <it>AgAcp34A-3 </it>is more polymorphic than the other two paralogs, possibly because of relaxation of purifying selection. Since both unequal crossing-over and gene conversion likely homogenized the members of this gene family, the interpretation of the evolutionary patterns is not straightforward. Although several haplotypes of the three paralogs are shared by most <it>A. gambiae </it>s.l. species, some fixed species-specific replacements (mainly placed in the N- and C-terminal portions of the secreted peptides) were also observed, suggesting some lineage-specific adaptation.</p> <p>Conclusions</p> <p>Progress in understanding the signaling cascade in the <it>A. gambiae </it>reproductive pathway will elucidate the interaction of this MAG-specific protein family with their female counterparts. This knowledge will allow a better evaluation of the relative importance of genes involved in the reproductive isolation and fertility of <it>A. gambiae </it>species and could help the interpretation of the observed evolutionary patterns.</p

    Asaia Activates Immune Genes in Mosquito Eliciting an Anti-Plasmodium Response: Implications in Malaria Control

    No full text
    In mosquitoes, the discovery of the numerous interactions between components of the microbiota and the host immune response opens up the attractive possibility of the development of novel control strategies against mosquito borne diseases. We have focused our attention to Asaia, a symbiont of several mosquito vectors who has been proposed as one of the most potential tool for paratransgenic applications; although being extensively characterized, its interactions with the mosquito immune system has never been investigated. Here we report a study aimed at describing the interactions between Asaia and the immune system of two vectors of malaria, Anophelesstephensi and An. gambiae. The introduction of Asaia isolates induced the activation of the basal level of mosquito immunity and lower the development of malaria parasite in An. stephensi. These findings confirm and expand the potential of Asaia in mosquito borne diseases control, not only through paratransgenesis, but also as a natural effector for mosquito immune priming

    Implementing the new p&amp;rtnership CVCP's review of action following the Dearing Report

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:98/10017 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Wolbachia in Aedes koreicus: Rare Detections and Possible Implications

    No full text
    The emerging distribution of new alien mosquito species was recently described in Europe. In addition to the invasion of Aedes albopictus, several studies have focused on monitoring and controlling other invasive Aedes species, as Aedes koreicus and Aedes japonicus. Considering the increasing development of insecticide resistance in Aedes mosquitoes, new control strategies, including the use of bacterial host symbionts, are proposed. However, little is known about the bacterial communities associated with these species, thus the identification of possible candidates for Symbiotic Control is currently limited. The characterization of the natural microbiota of field-collected Ae. koreicus mosquitoes from North-East Italy through PCR screening, identified native infections of Wolbachia in this species that is also largely colonized by Asaia bacteria. Since Asaia and Wolbachia are proposed as novel tools for Symbiotic Control, our study supports their use for innovative control strategies against new invasive species. Although the presence of Asaia was previously characterized in Ae. koreicus, our study characterized this Wolbachia strain, also inferring its phylogenetic position. The co-presence of Wolbachia and Asaia may provide additional information about microbial competition in mosquito, and to select suitable phenotypes for the suppression of pathogen transmission and for the manipulation of host reproduction in Ae. koreicus

    Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing

    No full text
    Symbiosis in insects is accumulating significant amount of studies: the description of a wide array of mutualistic associations across the evolutionary history of insects suggests that resident microbiota acts as a driving force by affecting several aspects of hosts biology. Among arthropods, mosquito midgut microbiota has been largely investigated, providing crucial insights on the role and implications of host-symbiont relationships. However, limited amount of studies addressed their efforts on the investigation of microbiota colonizing salivary glands and reproductive tracts, crucial organs for pathogen invasion and vertical transmission of symbiotic microorganisms. Using 16S rRNA gene sequencing-based approach, we analysed the microbiota of gut, salivary glands and reproductive tracts of several mosquito species, representing some of the main vectors of diseases, aiming at describing the dynamics of bacterial communities within the individual
    corecore