1,463 research outputs found

    Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents : an in vitro study

    Get PDF
    Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB) to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS) inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state

    Prevención de infecciones nosocomiales mediante impregnación antimicrobiana del catéter venoso central

    Get PDF
    Objetivo principal: Evaluar si el uso de catéter venoso central (CVC) impregnado en antimicrobiano es útil para la reducción de la bacteriemia relacionada con el catéter en pacientes ingresados en la Unidad de Cuidados Intensivos (UCI), e identificar el antimicrobiano más efectivo. Metodología: Se realizó una revisión sistemática en Bases Datos (CINAHL, PUBMED, CUIDEN, EMBASE, LILACS y SCIELO). Incluidos artículos de 2009 a 2017, inglés y español, que fuesen ensayos clínicos aleatorizados e incluyeran pacientes de UCI con CVC impregnado compara- do con CVC convencional. Se evaluó la calidad metodológica de los artículos mediante la herramienta CASPE. Resultados principales: De los 8 estudios, 4 mostraron significancia en cuanto al uso de CVC impregnados para la reducción de infecciones relacionadas con el catéter. Dentro de los antimicrobianos usados, la minociclinarifampicina muestra la mayor efectividad. Conclusión principal: El uso de CVC impregnado, puede ser efectivo en la reducción de infecciones en UCI. Dentro de las limitaciones de este tipo de catéter, a mayor número de luces y tiempo de mantenimiento de CVC, menor efectividad antimicrobiana. Objective: To evaluate if the use of central venous catheter (CVC) impregnated in antimicrobial is useful for the reduction of catheter-related bacteraemia (CRB) in patients of Intensive Care Unit (ICU) and who of thes is the highest. Methods: A Systematic Review: CINAHL, PUBMED, CUIDEN, EMBASE, LILACS and SCIELO. Were included Randomized Controlled Trials between 2009 – 2017, including patients coming from ICU with an impregnated CVC, compared with traditional CVC. The methodological quality of each paper was evaluated with the tool CASPE. Results: 8 studies were included. After the use of CVC impregnated, 4 studies were statistically significant and 4 could not be concluded with significance. The minocycline-rifampicin is the highest antimicrobial. Conclusions: The use of CVC impregnated, associated with other measures, could be an effective action for the reduction of infections or prevention of nosocomial infections in ICU patients. Greater time and more lumens is related with less effectiveness

    Recent changes of water discharge and sediment load in the Yellow River basin, China

    Get PDF
    The Yellow River basin contributes approximately 6% of the sediment load from all river systems globally, and the annual runoff directly supports 12% of the Chinese population. As a result, describing and understanding recent variations of water discharge and sediment load under global change scenarios are of considerable importance. The present study considers the annual hydrologic series of the water discharge and sediment load of the Yellow River basin obtained from 15 gauging stations (10 mainstream, 5 tributaries). The Mann-Kendall test method was adopted to detect both gradual and abrupt change of hydrological series since the 1950s. With the exception of the area draining to the Upper Tangnaihai station, results indicate that both water discharge and sediment load have decreased significantly (p<0.05). The declining trend is greater with distance downstream, and drainage area has a significant positive effect on the rate of decline. It is suggested that the abrupt change of the water discharge from the late 1980s to the early 1990s arose from human extraction, and that the abrupt change in sediment load was linked to disturbance from reservoir construction.Geography, PhysicalGeosciences, MultidisciplinarySCI(E)43ARTICLE4541-5613

    Assessment of genetically modified maize MIR604 for renewal authorisation under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐RX‐013)

    Get PDF
    Following the submission of application EFSA‐GMO‐RX‐013 under Regulation (EC) No 1829/2003 from Syngenta Crop Protection NV/SA, the EFSA Panel on Genetically Modified Organisms (GMO) was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect‐resistant genetically modified maize MIR604, for food and feed uses, excluding cultivation within the EU. The data received in the context of this renewal application contained post‐market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequence of the event in maize MIR604 considered for renewal is identical to the corrected sequence of the originally assessed event, the GMO Panel concludes that there is no evidence in renewal application EFSA‐GMO‐RX‐013 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MIR604

    Statement complementing the EFSA Scientific Opinion on application (EFSA‐GMO‐NL‐2009‐75) for placing on the market of genetically modified oilseed rape Ms8 × Rf3 × GT73 and subcombinations, which have not been authorised previously (i.e. Ms8 × GT73 and Rf3 × GT73) independently of their origin, for food and feed uses, import and processing, with the exception of isolated seed protein for food, under Regulation (EC) No 1829/2003), taking into consideration additional information

    Get PDF
    The EFSA Panel on Genetically Modified Organisms (GMO) previously assessed oilseed rape Ms8 × Rf3 × GT73 and its subcombinations Ms8 × GT73 and Rf3 × GT73 according to the scope as defined in the application EFSA‐GMO‐NL‐2009‐75, and was not in the position to complete the safety assessment of products rich in protein, such as rapeseed protein isolates or products of this nature in animal feeding. Following a mandate from the European Commission, the GMO Panel assessed a 28‐day toxicity study in mice with the glyphosate oxidoreductase (GOXv247) protein, provided to complement information related to application EFSA‐GMO‐NL‐2009‐75 for the placing on the market of oilseed rape Ms8 × Rf3 × GT73 and its subcombinations Ms8 × GT73 and Rf3 × GT73, for food and feed uses, import and processing, with the exception of isolated seed protein for food. The 28‐day toxicity study on Escherichia coli‐ produced GOXv247 protein did not show adverse effects in mice, at the gavage doses up to 1000 mg/kg body weight (bw) per day. Taking into account its previous assessment on EFSA‐GMO‐NL‐2009‐75 and the outcome of the 28‐day toxicity study in mice with the GOXv247 protein provided in this mandate, the GMO Panel, based on a weight of evidence approach, concludes that food and feed containing, consisting and produced from genetically modified oilseed rape Ms8 × Rf3 × GT73 and its sub combinations Ms8 × GT73 and Rf3 × GT73, are as safe as its conventional counterpart, according to the scope as defined in the application EFSA‐GMO‐NL‐2009‐75

    Assessment of genetically modified oilseed rape GT73 for renewal authorisation under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐RX‐002)

    Get PDF
    Following the submission of application EFSA‐GMO‐RX‐002 under Regulation (EC) No 1829/2003 from Monsanto Company, the Panel on Genetically Modified Organisms of EFSA (GMO) was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide‐tolerant genetically modified oilseed rape GT73. The data received in the context of this renewal application contained post‐market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequence of the event in oilseed rape GT73 considered for renewal of authorisation is identical to the sequence of the originally assessed event, the GMO Panel concludes that there is no evidence in renewal application EFSA‐GMO‐RX‐002 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on oilseed rape GT73

    Assessment of genetically modified maize MON 89034 for renewal authorisation under Regulation (EC) No 1829/2003 (application EFSA-GMO-RX-015)

    Get PDF
    Following the submission of application EFSA-GMO-RX-015 under Regulation (EC) No 1829/2003 from Bayer Agriculture BVBA, the EFSA Panel on Genetically Modified Organisms (GMO Panel) was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect-resistant genetically modified maize MON 89034, for food and feed uses, excluding cultivation within the EU. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequence of the event in maize MON 89034 considered for renewal is identical to the sequence of the originally assessed event, the GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-015 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MON 89034

    Assessment of genetically modified maize MON 88017 for renewal authorisation under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐RX‐014)

    Get PDF
    Following the submission of application EFSA‐GMO‐RX‐014 under Regulation (EC) No 1829/2003 from Monsanto Company the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect‐resistant and herbicide‐tolerant genetically modified maize MON 88017, for food and feed uses, excluding cultivation within the EU. The data received in the context of this renewal application contained post‐market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequence of the event in maize MON 88017 considered for renewal is identical to the sequence of the originally assessed event, the GMO Panel concludes that there is no evidence in renewal application EFSA‐GMO‐RX‐014 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MON 88017

    Effect of the G375C and G346E Achondroplasia Mutations on FGFR3 Activation

    Get PDF
    Two mutations in FGFR3, G380R and G375C are known to cause achondroplasia, the most common form of human dwarfism. The G380R mutation accounts for 98% of the achondroplasia cases, and thus has been studied extensively. Here we study the effect of the G375C mutation on the phosphorylation and the cross-linking propensity of full-length FGFR3 in HEK 293 cells, and we compare the results to previously published results for the G380R mutant. We observe identical behavior of the two achondroplasia mutants in these experiments, a finding which supports a direct link between the severity of dwarfism phenotypes and the level and mechanism of FGFR3 over-activation. The mutations do not increase the cross-linking propensity of FGFR3, contrary to previous expectations that the achondroplasia mutations stabilize the FGFR3 dimers. Instead, the phosphorylation efficiency within un-liganded FGFR3 dimers is increased, and this increase is likely the underlying cause for pathogenesis in achondroplasia. We further investigate the G346E mutation, which has been reported to cause achondroplasia in one case. We find that this mutation does not increase FGFR3 phosphorylation and decreases FGFR3 cross-linking propensity, a finding which raises questions whether this mutation is indeed a genetic cause for human dwarfism
    corecore