277 research outputs found

    SCSA based MATLAB pre-processing toolbox for 1H MR spectroscopic water suppression and denoising

    Get PDF
    In vivo 1H Magnetic Resonance Spectroscopy (MRS) is a useful tool in assessing neurological and metabolic disease, and to improve tumor treatment. Different pre-processing pipelines have been developed to obtain optimal results from the acquired data with sophisticated data fitting, peak suppression, and denoising protocols. We introduce a Semi-Classical Signal Analysis (SCSA) based Spectroscopy pre-processing toolbox for water suppression and data denoising, which allows researchers to perform water suppression using SCSA with phase correction and apodization filters and denoising of MRS data, and data fitting has been included as an additional feature, but it is not the main aim of the work. The fitting module can be passed on to other software. The toolbox is easy to install and to use: 1) import water unsuppressed MRS data acquired in Siemens, Philips and .mat file format and allow visualization of spectroscopy data, 2) allow pre-processing of single voxel and multi-voxel spectra, 3) perform water suppression and denoising using SCSA, 4) incorporate iterative nonlinear least squares fitting as an extra feature. This article provides information about how the above features have been included, along with details of the graphical user interface using these features in MATLAB

    New generation of electrochemical immunoassay based on polymeric nanoparticles for early detection of breast cancer

    Get PDF
    Screening and early diagnosis are the key factors for the reduction of mortality rate and treatment cost of cancer. Therefore, sensitive and selective methods that can reveal the low abundance of cancer biomarkers in a biological sample are always desired. Here, we report the development of a novel electrochemical biosensor for early detection of breast cancer by using bioconjugated self-assembled pH-responsive polymeric micelles. The micelles were loaded with ferrocene molecules as "tracers" to specifically target cell surface-associated epithelial mucin (MUC1), a biomarker for breast and other solid carcinoma. The synthesis of target-specific, ferrocene-loaded polymeric micelles was confirmed, and the resulting sensor was capable of detecting the presence of MUC1 in a sample containing about 10 cells/mL. Such a high sensitivity was achieved by maximizing the loading capacity of ferrocene inside the polymeric micelles. Every single event of binding between the antibody and antigen was represented by the signal of hundreds of thousands of ferrocene molecules that were released from the polymeric micelles. This resulted in a significant increase in the intensity of the ferrocene signal detected by cyclic voltammetry

    Multispectral imaging flow cytometry reveals distinct frequencies of γ-H2AX foci induction in DNA double strand break repair defective human cell lines

    Get PDF
    Copyright @ 2012 International Society for Advancement of Cytometry. The article can be accessed from the links below.This article has been made available through the Brunel Open Access Publishing Fund.The measurement of γ-H2AX foci induction in cells provides a sensitive and reliable method for the quantitation of DNA damage responses in a variety of cell types. Accurate and rapid methods to conduct such observations are desirable. In this study we have employed the novel technique of multispectral imaging flow cytometry to compare the induction and repair of γ-H2AX foci in three human cell types with different capacities for the repair of DNA double strand breaks (DSB). A repair normal fibroblast cell line MRC5-SV1, a DSB repair defective ataxia telangiectasia (AT5BIVA) cell line, and a DNA-PKcs deficient cell line XP14BRneo17 were exposed to 2 Gy gamma radiation from a 60Cobalt source. Thirty minutes following exposure we observed a dramatic induction of foci in the nuclei of these cells. After 24 hrs there was a predictable reduction on the number of foci in the MRC5-SV1 cells, consistent with the repair of DNA DSB. In the AT5BIVA cells, persistence of the foci over a 24 hour period was due to the failure in the repair of DNA DSB. However, in the DNA-PKcs defective cells (XP14BRneo17) we observed an intermediate retention of foci in the nuclei indicative of partial repair of DNA DSB. In summary, the application of imaging flow cytometry has permitted an evaluation of foci in a large number of cells (20,000) for each cell line at each time point. This provides a novel method to determine differences in repair kinetics between different cell types. We propose that imaging flow cytometry provides an alternative platform for accurate automated high through-put analysis of foci induction in a variety of cell types.This article is made available through the Brunel Open Access Publishing Fund

    I vasi o saloni librari Ermeneutica della iconografia bibliotecaria

    Get PDF
    corecore