6,096 research outputs found

    Frequency up- and down-conversions in two-mode cavity quantum electrodynamics

    Full text link
    In this letter we present a scheme for the implementation of frequency up- and down-conversion operations in two-mode cavity quantum electrodynamics (QED). This protocol for engineering bilinear two-mode interactions could enlarge perspectives for quantum information manipulation and also be employed for fundamental tests of quantum theory in cavity QED. As an application we show how to generate a two-mode squeezed state in cavity QED (the original entangled state of Einstein-Podolsky-Rosen)

    Structure and far-infrared edge modes of quantum antidots at zero magnetic field

    Get PDF
    We have investigated edge modes of different multipolarity sustained by quantum antidots at zero magnetic field. The ground state of the antidot is described within a local density functional formalism. Two sum rules, which are exact within this formalism, have been derived and used to evaluate the energy of edge collective modes as a function of the surface density and the size of the antidot.Comment: Typeset using Revtex, 8 pages and 6 Postscript figure

    Inverse Additive Problems for Minkowski Sumsets II

    Full text link
    The Brunn-Minkowski Theorem asserts that μd(A+B)1/dμd(A)1/d+μd(B)1/d\mu_d(A+B)^{1/d}\geq \mu_d(A)^{1/d}+\mu_d(B)^{1/d} for convex bodies A,BRdA,\,B\subseteq \R^d, where μd\mu_d denotes the dd-dimensional Lebesgue measure. It is well-known that equality holds if and only if AA and BB are homothetic, but few characterizations of equality in other related bounds are known. Let HH be a hyperplane. Bonnesen later strengthened this bound by showing μd(A+B)(M1/(d1)+N1/(d1))d1(μd(A)M+μd(B)N),\mu_d(A+B)\geq (M^{1/(d-1)}+N^{1/(d-1)})^{d-1}(\frac{\mu_d(A)}{M}+\frac{\mu_d(B)}{N}), where M=sup{μd1((x+H)A)xRd}M=\sup\{\mu_{d-1}((\mathbf x+H)\cap A)\mid \mathbf x\in \R^d\} and N=sup{μd1((y+H)B)yRd}N=\sup\{\mu_{d-1}((\mathbf y+H)\cap B)\mid \mathbf y\in \R^d\}. Standard compression arguments show that the above bound also holds when M=μd1(π(A))M=\mu_{d-1}(\pi(A)) and N=μd1(π(B))N=\mu_{d-1}(\pi(B)), where π\pi denotes a projection of Rd\mathbb R^d onto HH, which gives an alternative generalization of the Brunn-Minkowski bound. In this paper, we characterize the cases of equality in this later bound, showing that equality holds if and only if AA and BB are obtained from a pair of homothetic convex bodies by `stretching' along the direction of the projection, which is made formal in the paper. When d=2d=2, we characterize the case of equality in the former bound as well

    On the critical pair theory in abelian groups : Beyond Chowla's Theorem

    Full text link
    We obtain critical pair theorems for subsets S and T of an abelian group such that |S+T| < |S|+|T|+1. We generalize some results of Chowla, Vosper, Kemperman and a more recent result due to Rodseth and one of the authors.Comment: Submitted to Combinatorica, 23 pages, revised versio

    Cosmological and Astrophysical Neutrino Mass Measurements

    Get PDF
    Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach.Comment: 11 page

    Density of States for a Specified Correlation Function and the Energy Landscape

    Full text link
    The degeneracy of two-phase disordered microstructures consistent with a specified correlation function is analyzed by mapping it to a ground-state degeneracy. We determine for the first time the associated density of states via a Monte Carlo algorithm. Our results are described in terms of the roughness of the energy landscape, defined on a hypercubic configuration space. The use of a Hamming distance in this space enables us to define a roughness metric, which is calculated from the correlation function alone and related quantitatively to the structural degeneracy. This relation is validated for a wide variety of disordered systems.Comment: Accepted for publication in Physical Review Letter
    corecore