6,385 research outputs found

    Video question answering supported by a multi-task learning objective

    Get PDF
    Video Question Answering (VideoQA) concerns the realization of models able to analyze a video, and produce a meaningful answer to visual content-related questions. To encode the given question, word embedding techniques are used to compute a representation of the tokens suitable for neural networks. Yet almost all the works in the literature use the same technique, although recent advancements in NLP brought better solutions. This lack of analysis is a major shortcoming. To address it, in this paper we present a twofold contribution about this inquiry and its relation with question encoding. First of all, we integrate four of the most popular word embedding techniques in three recent VideoQA architectures, and investigate how they influence the performance on two public datasets: EgoVQA and PororoQA. Thanks to the learning process, we show that embeddings carry question type-dependent characteristics. Secondly, to leverage this result, we propose a simple yet effective multi-task learning protocol which uses an auxiliary task defined on the question types. By using the proposed learning strategy, significant improvements are observed in most of the combinations of network architecture and embedding under analysis

    Learning Video Retrieval Models with Relevance-Aware Online Mining

    Get PDF
    Due to the amount of videos and related captions uploaded every hour, deep learning-based solutions for cross-modal video retrieval are attracting more and more attention. A typical approach consists in learning a joint text-video embedding space, where the similarity of a video and its associated caption is maximized, whereas a lower similarity is enforced with all the other captions, called negatives. This approach assumes that only the video and caption pairs in the dataset are valid, but different captions - positives - may also describe its visual contents, hence some of them may be wrongly penalized. To address this shortcoming, we propose the Relevance-Aware Negatives and Positives mining (RANP) which, based on the semantics of the negatives, improves their selection while also increasing the similarity of other valid positives. We explore the influence of these techniques on two video-text datasets: EPIC-Kitchens-100 and MSR-VTT. By using the proposed techniques, we achieve considerable improvements in terms of nDCG and mAP, leading to state-of-the-art results, e.g. +5.3% nDCG and +3.0% mAP on EPIC-Kitchens-100. We share code and pretrained models at https://github.com/aranciokov/ranp

    On the quantumness of correlations in nuclear magnetic resonance

    Full text link
    Nuclear Magnetic Resonance (NMR) was successfully employed to test several protocols and ideas in Quantum Information Science. In most of these implementations the existence of entanglement was ruled out. This fact introduced concerns and questions about the quantum nature of such bench tests. In this article we address some issues related to the non-classical aspects of NMR systems. We discuss some experiments where the quantum aspects of this system are supported by quantum correlations of separable states. Such quantumness, beyond the entanglement-separability paradigm, is revealed via a departure between the quantum and the classical versions of information theory. In this scenario, the concept of quantum discord seems to play an important role. We also present an experimental implementation of an analogous of the single-photon Mach-Zehnder interferometer employing two nuclear spins to encode the interferometric paths. This experiment illustrate how non-classical correlations of separable states may be used to simulate quantum dynamics. The results obtained are completely equivalent to the optical scenario, where entanglement (between two field modes) may be present

    Inverse Additive Problems for Minkowski Sumsets II

    Full text link
    The Brunn-Minkowski Theorem asserts that μd(A+B)1/dμd(A)1/d+μd(B)1/d\mu_d(A+B)^{1/d}\geq \mu_d(A)^{1/d}+\mu_d(B)^{1/d} for convex bodies A,BRdA,\,B\subseteq \R^d, where μd\mu_d denotes the dd-dimensional Lebesgue measure. It is well-known that equality holds if and only if AA and BB are homothetic, but few characterizations of equality in other related bounds are known. Let HH be a hyperplane. Bonnesen later strengthened this bound by showing μd(A+B)(M1/(d1)+N1/(d1))d1(μd(A)M+μd(B)N),\mu_d(A+B)\geq (M^{1/(d-1)}+N^{1/(d-1)})^{d-1}(\frac{\mu_d(A)}{M}+\frac{\mu_d(B)}{N}), where M=sup{μd1((x+H)A)xRd}M=\sup\{\mu_{d-1}((\mathbf x+H)\cap A)\mid \mathbf x\in \R^d\} and N=sup{μd1((y+H)B)yRd}N=\sup\{\mu_{d-1}((\mathbf y+H)\cap B)\mid \mathbf y\in \R^d\}. Standard compression arguments show that the above bound also holds when M=μd1(π(A))M=\mu_{d-1}(\pi(A)) and N=μd1(π(B))N=\mu_{d-1}(\pi(B)), where π\pi denotes a projection of Rd\mathbb R^d onto HH, which gives an alternative generalization of the Brunn-Minkowski bound. In this paper, we characterize the cases of equality in this later bound, showing that equality holds if and only if AA and BB are obtained from a pair of homothetic convex bodies by `stretching' along the direction of the projection, which is made formal in the paper. When d=2d=2, we characterize the case of equality in the former bound as well

    Orbital current mode in elliptical quantum dots

    Full text link
    An orbital current mode peculiar to deformed quantum dots is theoretically investigated; first by using a simple model that allows to interpret analytically its main characteristics, and second, by numerically solving the microscopic equations of time evolution after an initial perturbation within the time-dependent local-spin-density approximation. Results for different deformations and sizes are shown.Comment: 4 REVTEX pages, 4 PDF figures, accepted in PRB:R

    Structure and far-infrared edge modes of quantum antidots at zero magnetic field

    Get PDF
    We have investigated edge modes of different multipolarity sustained by quantum antidots at zero magnetic field. The ground state of the antidot is described within a local density functional formalism. Two sum rules, which are exact within this formalism, have been derived and used to evaluate the energy of edge collective modes as a function of the surface density and the size of the antidot.Comment: Typeset using Revtex, 8 pages and 6 Postscript figure

    Non-Hermitian von Roos Hamiltonian's η\eta-weak-pseudo-Hermiticity, isospectrality and exact solvability

    Full text link
    A complexified von Roos Hamiltonian is considered and a Hermitian first-order intertwining differential operator is used to obtain the related position dependent mass η\eta-weak-pseudo-Hermitian Hamiltonians. Using a Liouvillean-type change of variables, the η\eta-weak-pseudo-Hermitian von Roos Hamiltonians H(x) are mapped into the traditional Schrodinger Hamiltonian form H(q), where exact isospectral correspondence between H(x) and H(q) is obtained. Under a user-friendly position dependent mass settings, it is observed that for each exactly-solvable η\eta-weak-pseudo-Hermitian reference-Hamiltonian H(q)there is a set of exactly-solvable η\eta-weak-pseudo-Hermitian isospectral target-Hamiltonians H(x). A non-Hermitian PT-symmetric Scarf II and a non-Hermitian periodic-type PT-symmetric Samsonov-Roy potentials are used as reference models and the corresponding η\eta-weak-pseudo-Hermitian isospectral target-Hamiltonians are obtained.Comment: 11 pages, no figures
    corecore