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Abstract. Due to the amount of videos and related captions uploaded
every hour, deep learning-based solutions for cross-modal video retrieval
are attracting more and more attention. A typical approach consists in
learning a joint text-video embedding space, where the similarity of a
video and its associated caption is maximized, whereas a lower simi-
larity is enforced with all the other captions, called negatives. This ap-
proach assumes that only the video and caption pairs in the dataset are
valid, but different captions - positives - may also describe its visual con-
tents, hence some of them may be wrongly penalized. To address this
shortcoming, we propose the Relevance-Aware Negatives and Positives
mining (RANP) which, based on the semantics of the negatives, im-
proves their selection while also increasing the similarity of other valid
positives. We explore the influence of these techniques on two video-
text datasets: EPIC-Kitchens-100 and MSR-VTT. By using the proposed
techniques, we achieve considerable improvements in terms of nDCG and
mAP, leading to state-of-the-art results, e.g. +5.3% nDCG and +3.0%
mAP on EPIC-Kitchens-100. We share code and pretrained models at
https://github.com/aranciokov/ranp.

Keywords: Video retrieval · cross-modal retrieval · contrastive loss ·
hard negative mining.

1 Introduction

When performing a search by typing a textual query on a multimedia search
engine, the user expects the retrieved contents to be semantically close to it. As
one can expect, it is important for the first retrieved item to be ‘exactly’ what
the user was looking for. Yet, the following ones should be treated as importantly
as the first one, given that multiple items are likely relevant to the user query.
In a recent work, Wray et al. [32] described this problem for the domain of
video retrieval. Similar observations were also made in previous work in different
domains, e.g. in image retrieval [12]. Focusing on text-video retrieval, most of
the current methods learn a joint textual-visual embedding space (e.g. [3, 9]). To
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do so, a video descriptor and a textual descriptor are computed independently
for each of the pairs (video and its captions) in the dataset; then, the similarity
of these descriptors is maximized. At inference time, given a textual query, the
multimedia search engine would retrieve the related video as the first result. To
achieve this goal, a typical choice consists in contrastive loss functions, e.g. [13,
14], which contrast the similarity of the paired video and text descriptors against
those of different videos and captions called ‘negatives’.

Several techniques have been proposed to decide which negatives to use in
order to drive the learning, e.g. ‘hard’ or ‘semi-hard’ [17, 28], how many of them,
e.g. one [28], two [5], or more [29]. Yet, in all these cases the pool of negatives
contains the captions which are not paired in the dataset: thus, the selection
of the negatives is often unaware of the overlap between the semantic content
of the caption and the contents of the video. As an example, a dataset may
contain a video v⋆ and its caption q⋆ about a chef preparing and baking a
cheesecake; a different caption q1 about preparing a cheesecake without baking
it; and q2 describing how to change a light bulb. By using the aforementioned
strategies, during training q1 and q2 may be selected as negative captions, and
their similarity to v⋆ and q⋆ would be lowered. While this is fine for q2, q1
should be treated differently considering its similarity with q⋆. To address this
shortcoming, in this paper we propose to improve the mining by making it aware
of such an overlap. In particular, we focus on ‘online’ mining (i.e. the negatives
are picked from the batch) because it is widely used in recent works (e.g. [3, 9])
and is less burdensome than ‘offline’ mining. Moreover, to estimate the overlap
we use a relevance function [7] defined on already available captions, avoiding the
need for costly annotations. Thus, we name it relevance-aware online negative
mining, or RAN. Differently from previous techniques which might select less
false negatives after training for some epochs, RAN improves the selection from
the start thanks to the use of semantics and not only the network state.

Similarly, we extend this idea to select captions which present a considerable
overlap with the video contents (‘positive’ captions), but are not paired to the
video. In fact, video retrieval methods which perform online mining only consider
the groundtruth pairs as valid positives, missing this opportunity. A few works
using offline mining select them based on semantic class labels [32, 33] and, in
different domains, this is done by using additional data which are not available
in video-text datasets, e.g. class identifiers for image retrieval [36] and person
re-identification [17]. By merging this technique with RAN, we obtain RANP
which carefully mines both negative and positive captions using semantics.

The main contributions of this work can be summarized as follows:

– to address the shortcoming of false negatives’ selection during the online
hard negative mining, we propose and formulate a relevance-aware variant
that we call RAN which, differently from previous techniques, uses semantics
to select better negatives from the start of the training;

– we introduce in the video retrieval field the relevance-aware online hard
positive mining, which helps selecting hard positives thanks to a relevance-
aware mechanism, and use it alongside RAN obtaining RANP;
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– we validate the proposed techniques on two public video-and-language datasets,
which are EPIC-Kitchens-100 and MSR-VTT, providing evidence of their
usefulness while also achieving the new state-of-the-art on EPIC-Kitchens-
100 with an improvement of +5.3% nDCG and +3.0% mAP.

2 Related work

Video retrieval. The approaches for cross-modal text-video retrieval usually
learn a joint textual-visual embedding space [3, 6, 9, 31]. Given the multimodal
nature of videos, several authors introduced novel techniques to learn a joint
representation of all the available modalities [11, 22, 23, 25, 31]. As an example,
Mixture of Embedding Experts (or MoEE, by Miech et al. [23]) and T2Vlad
(by Wang et al. [31]) applied techniques based on NetVLAD [1], whereas a
multimodal Transformer was used in Gabeur et al. [11]. Liu et al [22] proposed
Collaborative Experts (CE), which extended previous works with a gating mech-
anism to modulate each feature based on the other pretrained experts. Recently,
Croitoru et al. [6] shifted the attention to the textual counterpart, leveraging
the availability of multiple language models. The structure of the input data
was used in multiple works, e.g. by constructing embedding spaces based on
the part-of-speech (Wray et al. [33]) or by employing semantic role labeling to
learn global and local representations (Chen et al. [3]). All these works focus on
instance-based video retrieval, where only video and caption pairs in the dataset
are considered to evaluate the performance. Given that multiple descriptions can
describe a video, Wray et al. [32] proposed a ‘semantic’ video retrieval, which
considers multiple degrees of relevance when computing the evaluation metrics.

Contrastive loss and mining techniques. To learn the cross-modal em-
bedding spaces, contrastive losses [13, 14, 17] are often employed because they en-
force a high similarity for the descriptors of (video, caption) pairs in the dataset.
Hadsell et al. [14] initially computed the loss on pair of samples, and the idea
has been extended to triplets [28], quadruplets [5], and ‘N+1’-tuples [29]. Yet,
the amount of possible tuples scales exponentially (e.g. cubically with triplets)
and most of them contribute meaninglessly to the loss. Hence, mining techniques
were proposed to extract less tuples, either from the dataset (‘offline’) or from the
batch (‘online’). Offline mining is often avoided because it recomputes the tuples
throughout the training making it burdensome. Nonetheless, some works made
use of it in several domains, e.g. deep metric learning [15, 30] and video retrieval
[32, 33]. In ‘online’ mining, the positive items are given by groundtruth associ-
ations, e.g. (video, caption) pairs in the dataset, whereas the rest of the batch
forms the pool of negatives. The loss is often computed on all negatives (e.g. [11,
23]), but picking ‘hard’ or ‘semi-hard’ negatives (i.e. irrelevant but highly similar
to the groundtruth) is often preferred, as in [3, 9]. Nonetheless, recent research
(e.g. Xuan et al. [35, 36]) presented the usefulness of easy examples. Mining tech-
niques for positive items have also been proposed (e.g. in cross-modal [17, 36] and
near-duplicate video retrieval [19]) although they are based on the availability
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Pick up
bottle of wine

Take bottle

Close the
fridge

Pick up
bottle of wine

Close the
fridge

Learning

Take bottle

Fig. 1. By adopting the typical approach (Eq. 3), the caption ‘pick up bottle of wine’
is used as the hardest negative because it is not associated to the video in the dataset,
and its descriptor is the most similar (closest) to the video. We visualize the change in
similarity with the green (increase) and red (decrease) arrows.

of groundtruth labels. In representation learning for images or videos, positive
items were also artificially constructed through transformations [4, 16, 26, 27].

We aim at introducing semantic knowledge in training by leveraging the
relevance function. A similar idea is also used in [32], but we do so to improve
online mining techniques, which are usually preferred. Furthermore, differently
from previous video retrieval methods, we present a two-step approach to select
online hard positives and show its effectiveness on two large scale datasets.

3 Training a video retrieval model with contrastive loss
and mining

Given a video v⋆ and a pool of candidate textual queries, the aim of video-to-
text retrieval is to return a ranked list of candidates where on top we expect
the caption q⋆ corresponding to v⋆ in the dataset. ‘Ranked list’ implies that
the output is sorted based on the similarity (computed with s(·, ·), e.g. cosine
similarity) of v⋆ with all the candidate captions. In a common video retrieval
setting, the evaluation metrics solely focus on the rank of the corresponding
caption. But, multiple captions may equally describe the same video, so we focus
on semantic video retrieval [32], where the evaluation is based on metrics which
look at the whole ranked list. In the rest of the paper we focus on video-to-text,
but text-to-video retrieval is obtained by swapping the role of q⋆ and v⋆.

To train the video retrieval model, a contrastive loss which performs online
mining of triplets [28] is widely used [3, 9–11] and is based on this term:

Ln = max(0, ∆n + s(v⋆, q−)− s(v⋆, q⋆)) (1)

where ∆n is a fixed margin, and q− is a query which does not describe the video
v⋆ (i.e. q− is a negative query for v⋆). By optimizing with respect to Eq. 1, a
margin ∆n is enforced between the similarity of the groundtruth pair and the
similarity of video and negative query, in order to satisfy the following constraint:

s(v⋆, q−) +∆n < s(v⋆, q⋆) (2)
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Note that Eq. 1 can be optimized on the whole mini-batch (e.g. in [11, 23]), but
this leads to the inclusion of several easy negative captions (i.e. already satisfying
Eq. 2) which do not provide a meaningful contribution to the loss. Hence, to pick
useful triplets, online hard negative mining is often preferred (e.g. [3, 9]).

3.1 Online hard negative mining

Online hard negative mining consists in optimizing Eq. 1 only on hard negatives,
which are the captions q violating Eq. 2. Formally, given (v⋆, q⋆) and defining Q
as the set of captions in the mini-batch, the hardest negative is identified by:

q− = argmaxq∈Q\{q⋆}s(v
⋆, q) (3)

Since q⋆ describes v⋆ in the dataset, q⋆ is not considered when looking for the
hardest negative. Yet, not all the queries in Q \ {q⋆} should be considered neg-
ative: in fact, there may be queries which correctly (or at least partially) de-
scribe v⋆ although the association is not present in the dataset. As an example,
let q⋆ be ‘take bottle’, q1 ‘pick up bottle of wine’, q2 ‘close the fridge’, and
s(v⋆, q1) > s(v⋆, q2) as in Fig. 1. Then, q1 is the hardest negative because of
two conditions: firstly, it is not q⋆ which, according to Eq. 3, makes it a possible
negative; secondly, it is the closest ‘negative’ to v⋆, hence selected by argmax.
Note that s(·, ·) is tightly bound to the network state, hence after some training
it might not select some of these false negatives. Nonetheless, the techniques we
propose avoid these situations from the start by using the semantics of the data.

4 Proposed method: relevance-aware online mining

4.1 Relevance

To introduce the relevance, we start with an example. Let: (x1) ‘pick up a flow-
erpot and a sunflower’, (x2) ‘pick an helianthus and a flowerpot’, (x3) ‘pot the
lily in a flowerpot’, (x4) ‘put the cake in the oven’. We consider x2 and x1 quite
similar (‘helianthus’ and ‘sunflower’ are synonyms), hence x2 is highly relevant;
x3 is slightly relevant because of ‘flowerpot’, but the flowers and actions are
different; and x4 is irrelevant. Therefore, we want to capture semantic relations
(e.g. synonyms) to determine how ‘similar’ the two captions are, i.e. the degree
of relevance. In particular, we define the relevance function R(xi, xj) in terms of
noun and verb classes shared among xi and xj , as in Damen et al. [7]. Formally:

R(xi, xj) =
1

2

( |xV
i ∩ xV

j |
|xV

i ∪ xV
j |

+
|xN

i ∩ xN
j |

|xN
i ∪ xN

j |

)
(4)

where xV
i and xN

i represent, respectively, the set of verb and noun classes identi-
fied in the i-th caption. We refer to ‘noun class’ (or ‘verb class’) to consider the
noun (or verb) tokens which share similar semantics. When one (or both) of the
inputs to R is a video, we consider two situations. If only one caption qi is paired
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to the video vi, we consider for vi the noun and verb classes of qi. Conversely, if
multiple captions are available, then we construct a word set based on the classes
which appear more frequently among the different captions, as also recently done
in [32]. That is: xN

i = {cN |cN ∈ D(xi)|ρ,N}, where cN is a noun class, D(xi) is
the set of captions available for xi, and we define D(xi)|ρ,N as the reduced set
of classes for the part-of-speech N which appear in at least ρ · |D(xi)| captions.
Formally: D(xi)|ρ,N = {c |PoS(c) = N ∧ |{d|d ∈ D(xi) ∧ c ∈ d}| ≥ ρ · |D(xi)|},
where PoS(·) determines the part-of-speech of the given class. Note that xV

i is
built equivalently. Finally, looking at the previous example, we can compute the
following: R(x1, x2) = 1, R(x1, x3) = 0.16, and R(x1, x4) = 0.

4.2 Relevance-aware online hard negative mining

In Sec. 3.1 we intuitively describe a limitation of current online hard negative
mining. Formally, we consider R and fix a threshold τ to determine the degree
of relevance above which a caption is considered positive. Then, {q |R(v⋆, q) ≥
τ, q ∈ Q\{q⋆}} may be non empty, which may consequently lead to the selection
of a caption q− as negative, although it is ‘positive’ to v⋆, i.e. R(v⋆, q−) ≥ τ .
Considering that the triplet loss lowers the similarity of q− to v⋆ while increasing
the similarity of q⋆ to v⋆, q− would be penalized although describing it correctly.
To address this shortcoming, we introduce RAN, which makes the mining process
aware of the relevance of the captions to the video, in order to avoid the selection
of a ‘false negative’. We consider the following equation:

q− = argmaxq∈Q\{q |R(v⋆,q)≥τ}s(v
⋆, q) (5)

where, differently from Eq. 3, we employ {q |R(v⋆, q) ≥ τ} to capture the items
which should be excluded from the pool of candidate negatives.

4.3 Relevance-aware online hard positive mining

With the previous technique we pick high quality negative captions. Similarly,
we want to select the captions which describe v⋆ and increase their similarity
to it, to further improve the structure of the embedding space. To do so, we
propose a two-steps approach for the relevance-aware online mining of positives.
First of all, we compute the hardest positive q+ for v⋆, a positive caption (i.e.
R(v⋆, q+) ≥ τ) which has a far too dissimilar representation when compared to
v⋆. By following the notation used for the negative mining, this would be:

q+ = argminq∈Q\{q⋆}s(v
⋆, q) (6)

but this is not optimal, as it may select as positives the easy negative captions
which were not violating Eq. 2. Hence, we propose to further employ the rele-
vance to improve Eq. 6, by capturing the negative captions with {q |R(v⋆, q) <
τ} and excluding them from the selection of the hard positives. Therefore:

q+ = argminq∈Q\{q |R(v⋆,q)<τ}s(v
⋆, q) (7)
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Then, we use these positive captions in the triplet loss, in order to increase
the similarity of v⋆ and q+, while at the same time decrease the similarity with
q−. This can be formalized as:

Lp = max(0, ∆p + s(v, q−)− s(v, q+)) (8)

Given a batch B of paired videos and captions, the final video-to-text loss is:

Lv−t =
1

|B|
(∑
v∈B

Lp +
∑
v∈B

Ln

)
(9)

5 Results

To validate our method, we consider two large scale video-text datasets: EPIC-
Kitchens-100 [7] and MSR-VTT [34]. The former contains 67217 clips for training
and 9668 for testing. Each clip is annotated with a short caption describing
activities in the kitchen. Moreover, for each caption, verb and noun semantic
classes are available. MSR-VTT consists of 10000 clips about multiple domains,
each annotated with 20 free-form captions. We follow the official split (from [34])
of 6513, 497, and 2990 clips for training, validation, and testing. To compute the
semantic classes, we consider ρ = 0.25 (see Sec. 4.1) and employ a pipeline made
of spaCy, WordNet [24], and Lesk algorithm [21] as in Wray et al. [32].

We consider both ‘text-to-video’ and ‘video-to-text’ versions of Ln (Eq. 1)
and Lp (Eq. 8). We employ HGR [3] as our base model and eventually augment it
with the proposed RAN and RANP. On both datasets, we perform the training
for 50 epochs using a batch size of 64. For EPIC-Kitchens-100 we use TBN [20]
features, provided alongside the dataset [7]. For MSR-VTT we use ImageNet-
pretrained ResNet-152 features (from [3]). After training, we select the best
model on the validation set to perform the evaluation on the testing set.

As recently proposed by [32], we use Normalized Discounted Cumulative Gain
(nDCG) [18] and Mean Average Precision (mAP) [2] for evaluation purposes. For
MSR-VTT we only use nDCG because, due to how semantic classes are com-
puted for its videos, the relevance values of paired captions are always lower than
one, making mAP unusable. More details can be found in the Supplementary.

5.1 Analysis of hard negatives: relevance distribution

In Fig. 2 we plot the distribution of relevance values of the hard negatives during
one epoch of training. On EPIC-Kitchens-100 (Fig. 2 left) we observe a sizeable
amount (more than 50%) of negatives which are relevant to the query. In par-
ticular, 13% of them have a relevance of 1. Moreover, we observe four modes
for the relevance: 0 (45%), 50 (36%), 100 (13%), 25 (3%). Fig. 2 (middle) shows
how the distribution changes when we apply the proposed RAN with τ = 0.75
(visualized with an orange bar) to improve the negatives’ selection (see Sec. 4.2).
By doing so, a lower amount of relevant items will be selected as hard negatives.
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Fig. 2. Distribution of relevance values of hard negatives (R values from 0 to 100 on
x axis, relative frequency on y axis) observed during one epoch of training (batch size
64) on EPIC-Kitchens-100 (left) and on MSR-VTT (right). In the middle, we apply
the relevance-aware negative mining with τ = 0.75 (visualized with the orange bar).

RAN RANP RAN RANP RAN RANP
τ 0.75 0.75 0.40 0.40 0.15 0.15

EPIC nDCG (%) 35.9 37.4↑1.5 40.2↑4.3 48.8↑12.9 59.0↑23.1 48.4↑12.5 58.8↑22.9
mAP (%) 39.5 43.1↑4.4 46.4↑6.9 46.4↑6.9 46.1↑6.6 46.5↑7.0 47.2↑7.7

MSR-VTT nDCG (%) 25.3 25.2↑0.1 - 26.4↑1.1 28.0↑2.7 28.7↑3.4 31.1↑5.8

Table 1. Performance of the baseline and the proposed RAN and RANP (improvement
shown with ↑X). We pick the values for the threshold τ close to the values of the modes
(Fig. 2). As τ decreases, less positives are wrongly picked as negatives. Moreover, RANP
pulls closer to each video more similar captions, leading to even better performance.

For MSR-VTT we compute a set of classes for each video based on ‘popular’
classes which appear in the multiple descriptions (see Sec. 4.1). Consequently,
the groundtruth captions for a given video may have a relevance lower than
1, making it harder to find relevant items within random mini-batches (Fig. 2
right). Here the top four modes are: 0 (85.2%), 10 (4.7%), 5 (4%), 15 (1.7%).

5.2 Influence of the threshold τ on the proposed techniques

In Table 1 we present the results obtained by HGR when trained with the original
mining technique (Eq. 3) followed by the usage of the proposed RAN and RANP
mining strategies. We perform these experiments on both datasets, keeping ∆n =
∆p = 0.2 (as in [3]) and picking the values for τ from the modes observed in
the previous section. In the Supplementary we show that minor changes can be
observed by varying these values, although proper hyperparameter optimization
is required. HGR achieves 35.9% nDCG and 39.5% mAP on EPIC-Kitchens-100,
whereas it achieves 25.3% nDCG on MSR-VTT. By introducing the proposed
strategies, we observe consistent improvements on both datasets.

First of all, lowering τ has a positive effect on both mAP and nDCG. This
is likely due to the improved selection of the hard examples, which avoids sev-
eral ‘false negatives’ and leads to a stabler training. As an example, for EPIC-
Kitchens-100 τ = 0.75 means that the examples with a relevance bigger than τ
are no longer treated as possible negatives, and we observe 37.4% nDCG (+1.5%)
and 43.1% mAP (+4.4%). On the other hand, for MSR-VTT the same τ leads
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EPIC-Kitchens-100
nDCG (%) mAP (%)

Model t2v v2t avg t2v v2t avg
HGR [3] 37.9 41.2 35.9 35.7 36.1 39.5
MME [33] 46.9 50.0 48.5 34.0 43.0 38.5
JPoSE [33] 51.5 55.5 53.5 38.1 49.9 44.0
Hao et al. [8] 51.8 55.3 53.5 38.5 50.0 44.2
RAN 47.1 49.7 48.4 43.1 49.9 46.5
RANP 56.5↑4.7 61.2↑5.7 58.8↑5.3 42.3↑3.8 52.0↑2.0 47.2↑3.0

Table 2. Comparison with the baseline (HGR [3]) and state-of-the-art methods for
EPIC-Kitchens-100 (results for MME and JPoSE are from [7]). By using RAN we
achieve competitive mAP. With RANP, which identifies both negatives and positives
via relevance, we achieve state-of-the-art results on mAP and nDCG simultaneously.

to almost no improvements because less than 1% of the hard negatives have a
relevance higher than 0.75 (see Fig. 2 right).

Secondly, by using RAN on EPIC-Kitchens-100 we observe an improvement
of up to 12.9% nDCG (48.8%) and 7.0% mAP (46.5%) over the base model; on
MSR-VTT the improvements measure up to 3.4% nDCG (28.7%). On the former
we achieve great improvements thanks to the simplicity of the captions which
makes it possible to easily find many relevant items and remove them from the
pool of negatives. Conversely, the captions in MSR-VTT are multiple and free-
form, making high relevance values rarer and thus showing lesser improvements.

Thirdly, the proposed RANP is also greatly useful. In fact, compared to only
using the relevance-aware negative mining (i.e. RAN), on EPIC-Kitchens-100
we achieve further improvements, reaching 59.0% nDCG with τ = 0.40 (+23.1%
over the baseline) and 47.2% mAP with τ = 0.15 (+7.7%). On MSR-VTT we
also observe considerable improvements in terms of nDCG (up to +5.8%). With
RANP, during training we ensure that its original caption is pulled near the
video, but also other captions which describe its visual contents, further improv-
ing the quality of the ranked lists. Based on these observations, in the following
experiments we use τ = 0.15 for EPIC-Kitchens-100 and τ = 0.10 for MSR-VTT.

5.3 Comparison with state-of-the-art

In Tables 2 and 3 we report the results we obtain with HGR [3] augmented by the
proposed techniques on both EPIC-Kitchens-100 and MSR-VTT, and propose
a comparison to other popular methods.

EPIC-Kitchens-100. In Table 2 we compare to MME and JPoSE, proposed
by Wray et al. [33] and used in [7] as the baselines for the challenge. We include
Hao et al. [8] which is the current the state-of-the-art (53.5% nDCG and 44.2%
mAP). We observe considerable improvements (+5.3% nDCG and +3.0% mAP)
by using the proposed RANP, leading us to a new state-of-the-art result (58.8%
nDCG and 47.2% mAP). Moreover, such an improvement is observed when look-
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Model CE MoEE HGR RAN RANP

MSR-VTT nDCG (%)
t2v 28.9 28.4 24.6 27.4 29.1↑0.2
v2t 30.0 29.5 26.1 30.1 34.1↑4.1
avg 29.4 29.0 25.3 28.7 31.6↑2.2

Table 3. For a fair comparison with MoEE [23] and CE [22] we evaluate their perfor-
mance while using appearance features and the code provided by the authors. Then
we evaluate the baseline (HGR) and the proposed techniques.

ing both at the average and at task-level values (text-to-video and video-to-text),
giving a clear evidence of the usefulness of the proposed techniques.

MSR-VTT. For MSR-VTT, we compare to MoEE (Miech et al. [23]) and
CE (Liu et al. [22]). To have a fair comparison, in Table 3 we evaluate them
using only appearance features within the open source codebase of [22]. Then,
we include the results for HGR and for the proposed techniques. CE and MoEE
present higher nDCG rates (respectively 29.4% and 29.0%) than the base HGR
(25.3%), showing that CE and MoEE compute higher quality ranked lists than
our baseline. If we augment HGR with the proposed relevance-aware hard nega-
tive mining (RAN) we observe an improvement of +3.4% nDCG (28.7%). This is
due to having less positive captions wrongly selected as negatives during train-
ing. If we also introduce the proposed variant for hard positives (using the
full RANP), we observe a further improvement, leading to an overall margin
of +2.2% over CE (31.6% versus 29.4%). With the introduction of this second
technique, less irrelevant captions are retrieved at the top of the ranked list.

6 Conclusions

Video retrieval methods are usually trained using a contrastive loss, such as the
triplet loss [28]. During training, the negatives are selected among the captions
or videos which are not associated in the dataset. In this paper, we showed that
the typical formulation used to mine the negatives also selects captions which
partially describe the input video. To emphasize the importance of this selection
step, we proposed the relevance-aware online hard negative mining, which uses a
relevance function to separate positive and negative items. Furthermore, in the
video retrieval community positive examples hardly are mined because proper la-
bels are usually absent. To this end, we also proposed the relevance-aware online
hard positive mining. Finally, we gave empirical evidence of the strength of the
proposed techniques by applying them on a deep learning model (HGR [3]) and
testing it on two benchmark datasets: the recently released EPIC-Kitchens-100
[7] and MSR-VTT [34]. In both cases, the application of the proposed techniques
leads to considerable improvements and state-of-the-are results.
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7 Appendix

7.1 Evaluation metrics

As recently proposed by [32], we use the Normalized Discounted Cumulative
Gain (nDCG) [18] and the Mean Average Precision (mAP) [2] for evaluation
purposes. As is done in [18, 7], we define the DCG in terms of the relevance (see
Sec. 4.1): given an item a and a ranked list of queries Q (restricted to the top
Nr relevant items), the DCG is given by

DCG(a,Q) =

Nr∑
k=1

R(a, qk)

log2(k + 1)
(10)

whereas the nDCG is obtained by normalizing the DCG with respect to IDCG,
which is the optimal value obtained by sorting the ranked list following a de-
scending order of relevance values:

nDCG(a,Q) =
DCG(a,Q)

IDCG(a,Q)
(11)

Let N be the length of the ranking list (consisting of both the irrelevant items
and the Nr relevant items), P (k) is the Precision at k [2]. Let r(k) = 1 when
R(a, qk) = 1, and r(k) = 0 otherwise (that is, r(·) is an indicator function of
binary relevance). Then, for an item a, the Average Precision (AP) is:

AP (a) =

∑N
k=1 P (k) · r(k)

Nr
(12)

whereas the mAP is given by the mean over all the items. An important difference
between the two metrics lies in how they consider the relevance: while it is
a continuous function in [0, 1] for the DCG, the AP only considers a binary
definition of the relevance.

7.2 Different margins for negatives and positives

In Sec. 5.2 of the main paper, we used the same value for both margins of the
contrastive loss terms (∆n in Eq. 1 and ∆p in Eq. 8). Yet, changing their value
may lead to embedding spaces which are organized differently which, in turn,
may affect the final performance. To explore this inquiry, we fix ∆n = 0.2 and
vary ∆p in {0.10, 0.15, 0.20, 0.25, 0.30}. The results are shown in Table 4. Note
that for τ we use the values leading to the best average nDCG in Sec. 5.2 of
the main paper: for EPIC-Kitchens-100 we use τ = 0.4, whereas for MSR-VTT
we use τ = 0.10. As can be seen, changing ∆p has limited impact on the nDCG
performance on EPIC-Kitchens-100, leading to up to -0.3% when ∆p is decreased
and up to +0.2% when it is increased. On the other hand, by decreasing ∆p an
improvement of up to +1.0% is observed for the mAP. Conversely, on MSR-VTT
we observe lesser improvements in terms of nDCG (up to +0.5%).
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EPIC MSR-VTT
∆n ∆p nDCG (%) mAP (%) nDCG (%)
0.20 0.10 58.7 47.1 31.2
0.20 0.15 59.0 46.6 31.3
0.20 0.20 59.0 46.1 31.1
0.20 0.25 59.2 46.0 31.6
0.20 0.30 59.0 45.6 31.6

Table 4. We keep ∆n = 0.20 and vary ∆p in {0.10, 0.15, 0.20, 0.25, 0.30}. On EPIC-
Kitchens-100 we observe up to +1% mAP when compared to the default values for the
margins (i.e. 0.20), whereas on MSR-VTT we observe smaller variations.
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