16 research outputs found

    New Insight regarding Legionella Non- Pneumophila Species Identification: Comparison between the Traditional mip Gene Classification Scheme and a Newly Proposed Scheme Targeting the rpoB Gene

    Get PDF
    The identification of Legionella non-pneumophila species (non-Lp) in clinical and environmental samples is based on the mip gene, although several studies suggest its limitations and the need to expand the classification scheme to include other genes. In this study, the development of a new classification scheme targeting the rpoB gene is proposed to obtain a more reliable identification of 135 Legionella environmental isolates. All isolates were sequenced for the mip and rpoB genes, and the results were compared to study the discriminatory power of the proposed rpoB scheme. Complete concordance between the mip and rpoB results based on genomic percent identity was found for 121/135 (89.6%) isolates; in contrast, discordance was found for 14/135 (10.4%) isolates. Additionally, due to the lack of reference values for the rpoB gene, inter- and intraspecies variation intervals were calculated based on a pairwise identity matrix that was built using the entire rpoB gene (∼4,107 bp) and a partial region (329 bp) to better evaluate the genomic identity obtained. The interspecies variation interval found here (4.9% to 26.7%) was then proposed as a useful sequence-based classification scheme for the identification of unknown non-Lp isolates. The results suggest that using both the mip and rpoB genes makes it possible to correctly discriminate between several species, allowing possible new species to be identified, as confirmed by preliminary whole-genome sequencing analyses performed on our isolates. Therefore, starting from a valid and reliable identification approach, the simultaneous use of mip and rpoB associated with other genes, as it occurs with the sequence-based typing (SBT) scheme developed for Legionella pneumophila, could support the development of multilocus sequence typing to improve the knowledge and discovery of Legionella species subtypes

    The relevance of molecular genotyping to allocate cases in a suspected outbreak of Legionella pneumonia in patients with prolonged immunosuppressive therapy

    Get PDF
    Three cases of pneumonia caused by Legionella pneumophila serogroup 1 (Lp1) in immunosuppressed patients with repeated hospitalization were suspected as a healthcare-associated cluster. The environmental investigation did not reveal the presence of legionellae in the hospital patient rooms. Water samples collected from the homes of two patients were also negative for Legionella spp. In the absence of environmental strains potentially involved in the infections, we proceeded to genotype environmental Lp1 strains isolated in the hospital during routine water sampling during the decade 2009–2019 and recovered after long-term storage at −20 °C. These 'historical' strains exhibited a high grade of similarity and stability over time, regardless of the disinfection systems. The different molecular profiles shown among the clinical and environmental strains excluded a nosocomial outbreak. The study suggests that the application of molecular typing may be a useful tool to discriminate hospital vs community-acquired cases, mostly for severely immunosuppressed patients in whom the symptomatology could be insidious and the incubation period could be prolonged. Moreover, the genotyping allowed us to exclude any link between the cases. Keywords: Legionnaires' disease, Immunosuppressed patients, Sequence-based typing, Cluster, Environmental strains, Clinical strain

    Serratia marcescens in a neonatal intensive care unit: two long-term multiclone outbreaks in a 10-year observational study

    Get PDF
    We investigated two consecutive Serratia marcescens (S. marcescens) outbreaks which occurred in a neonatal intensive care unit (NICU) of a tertiary level hospital in North Italy in a period of 10 years (January 2003-December 2012). Risk factors associated with S. marcescens acquisition were evaluated by a retrospective case-control study. A total of 21,011 clinical samples was examined: S. marcescens occurred in 127 neonates: 43 developed infection and 3 died. Seven clusters were recorded due to 12 unrelated clones which persisted for years in the ward, although no environmental source was found. The main epidemic clone A sustaining the first cluster in 2003 reappeared in 2010 as an extended spectrum ?-lactamase (ESBL)-producing strain and supporting the second epidemic. Birth weight, gestational age, use of invasive devices and length of stay in the ward were significantly related to S. marcescens acquisition. The opening of a new ward for non-intensive care-requiring neonates, strict adherence to alcoholic hand disinfection, the timely identification and isolation of infected and colonized neonates assisted in containing the epidemics. Genotyping was effective in tracing the evolution and dynamics of the clones demonstrating their long-term persistence in the ward

    Pulmonary disease caused by Mycobacterium marseillense, Italy

    Get PDF
    Mycobacteriummarseillense was recently described as a new species belonging to the Mycobacterium avium complex (MAC).We describe a case of pulmonary disease caused by M. marseillense in an immunocompetent patient. All strains isolated from the patient were preliminarily identified as M. intracellulare; however, a retrospective molecular analysis corrected the identification to M. marseillense

    Improvement of Legionnaires' disease diagnosis using real-time PCR assay: a retrospective analysis, Italy, 2010 to 2015

    Get PDF
    AimTo evaluate real-time PCR as a diagnostic method for Legionnaires' disease (LD). Detection of Legionella DNA is among the laboratory criteria of a probable LD case, according to the European Centre for Disease Prevention and Control, although the utility and advantages, as compared to culture, are widely recognised.MethodsTwo independent laboratories, one using an in-house and the other a commercial real-time PCR assay, analysed 354 respiratory samples from 311 patients hospitalised with pneumonia between 2010-15. The real-time PCR reliability was compared with that of culture and urinary antigen tests (UAT). Concordance, specificity, sensitivity and positive and negative predictive values (PPV and NPV, respectively) were calculated.ResultsOverall PCR detected eight additional LD cases, six of which were due to Legionella pneumophila (Lp) non-serogroup 1. The two real-time PCR assays were concordant in 99.4% of the samples. Considering in-house real-time PCR as the reference method, specificity of culture and UAT was 100% and 97.9% (95% CI: 96.2-99.6), while the sensitivity was 63.6% (95%CI: 58.6-68.6) and 77.8% (95% CI: 72.9-82.7). PPV and NPV for culture were 100% and 93.7% (95% CI: 91.2-96.3). PPV and NPV for UAT were 87.5% (95% CI: 83.6-91.4) and 95.8% (95% CI: 93.5-98.2).ConclusionRegardless of the real-time PCR assay used, it was possible to diagnose LD cases with higher sensitivity than using culture or UAT. These data encourage the adoption of PCR as routine laboratory testing to diagnose LD and such methods should be eligible to define a confirmed LD case

    The new phylogenesis of the genus Mycobacterium

    Get PDF
    Abstract Phylogenetic knowledge of the genus Mycobacterium is based on comparative analysis of their genetic sequences. The 16S rRNA has remained for many years the only target of such analyses, but in the last few years, other housekeeping genes have been investigated and the phylogeny based on their concatenated sequences become a standard. It is now clear that the robustness of the phylogenetic analysis is strictly related to the size of the genomic target used. Whole genome sequencing (WGS) is nowadays becoming widely accessible and comparatively cheap. It was decided, therefore, to use this approach to reconstruct the ultimate phylogeny of the genus Mycobacterium . Over 50 types of strains of the same number of species of Mycobacterium were sequenced using the Illumina HiSeq platform. The majority of the strains of which the whole sequence was already available in GenBank were excluded from this panel with the aim of maximizing the number of the species with genome available. Following assembling and annotation with proper software, the phylogenetic analysis was conducted with PhyloPhlAn and the pan-genome analysis pipeline. The phylogenetic three which emerged was characterized by a clear-cut distinction of slowly and rapidly growing species with the latter being more ancestral. The species of the Mycobacterium terrae complex occupied an intermediate position between rapid and slow growers. Most of the species revealed clearly related and occupied specific phylogenetic branches. Thanks to the WGS technology, the genus Mycobacterium is finally approaching its definitive location

    Widespread circulation of echovirus 6 causing aseptic meningitis in paediatric patients in the area of Modena, Italy, in 2011

    No full text
    Introduction: Between May and November 2011, enterovirus RNA was detected in the cerebrospinal fluids (CSFs) of 72 children with signs of aseptic meningitis admitted to paediatric departments of different Hospitals of the prefecture of Modena, Emilia Romagna region, Italy. Enterovirus RNA was detected in 34 CSFs by commercial reverse transcriptase-polymerase chain reaction (RT-PCR). Twenty-one samples, resulted human enterovirus B by species-specific RT-nested PCR, were submitted to sequencing of the 3’ terminus of the VP1 gene. Materials and Methods: Upon sequencing and interrogation of the National Center for Biotechnology Information database, all 21 viruses were characterized as echovirus 6 (E6), and posses a 100% nucleotide identity each other.Results: This study reports the molecular detection and typing of E6 isolated from clinical specimens from paediatric patients with aseptic meningitis in the wide area of Modena, Italy, in 2011.</p

    Advances in Legionella Control by a New Formulation of Hydrogen Peroxide and Silver Salts in a Hospital Hot Water Network

    No full text
    Legionella surveillance is an important issue in public health, linked to the severity of disease and the difficulty associated with eradicating this bacterium from the water environment. Different treatments are suggested to reduce Legionella risk, however long-term studies of their efficiency are lacking. This study focused on the activity of a new formulation of hydrogen peroxide and silver salts, WTP828, in the hospital hot water network (HWN) to contain Legionella contamination during two years of treatment. The effectiveness of WTP828 was tested measuring physical-chemical and microbiological parameters such as Legionella, Pseudomonas aeruginosa (P. aeruginosa), and a heterotopic plate count (HPC) at 36 &deg;C. Legionella isolates were identified by serotyping and genotyping. WTP 828 induced a reduction in Legionella&ndash;positive sites (60% to 36%) and contamination levels (2.12 to 1.7 log10 CFU/L), with isolates belonging to L. pneumophila SG1 (ST1 and ST104), L. anisa and L. rubrilucens widely distributed in HWN. No relevant contamination was found for other parameters tested. The long-term effect of WTP828 on Legionella containment suggest the easy and safe application of this disinfectant, that combined with knowledge of building characteristics, an adequate environmental monitoring and risk assessment plan, become the key elements in preventing Legionella contamination and exposure

    A Retrospective Whole-Genome Sequencing Analysis of Carbapenem and Colistin-Resistant Klebsiella pneumoniae Nosocomial Strains Isolated during an MDR Surveillance Program

    No full text
    Multidrug-resistant Klebsiella pneumoniae (MDR Kp), in particular carbapenem-resistant Kp (CR-Kp), has become endemic in Italy, where alarming data have been reported on the spread of colistin-resistant CR-Kp (CRCR-Kp). During the period 2013&ndash;2014, 27 CRCR-Kp nosocomial strains were isolated within the Modena University Hospital Policlinico (MUHP) multidrug resistance surveillance program. We retrospectively investigated these isolates by whole-genome sequencing (WGS) analysis of the resistome, virulome, plasmid content, and core single nucleotide polymorphisms (cSNPs) in order to gain insights into their molecular epidemiology. The in silico WGS analysis of the resistome revealed the presence of genes, such as blaKPC, related to the phenotypically detected resistances to carbapenems. Concerning colistin resistance, the plasmidic genes mcr 1&ndash;9 were not detected, while known and new genetic variations in mgrB, phoQ, and pmrB were found. The virulome profile revealed the presence of type-3 fimbriae, capsular polysaccharide, and iron acquisition system genes. The detected plasmid replicons were classified as IncFIB(pQil), IncFIB(K), ColRNAI, IncX3, and IncFII(K) types. The cSNPs genotyping was consistent with the multi locus sequence typing (MLST) and with the distribution of mutations related to colistin resistance genes. In a nosocomial drug resistance surveillance program, WGS proved to be a useful tool for elucidating the spread dynamics of CRCR-Kp nosocomial strains and could help to limit their diffusion

    Two Overlapping Clusters of Group B Streptococcus Late-onset Disease in a Neonatal Intensive Care Unit

    No full text
    OBJECTIVES: Current predominant routes of group B Streptococcus (GBS) transmission in preterm neonates admitted to neonatal intensive care unit (NICU) are poorly defined. We report 2 overlapping clusters of GBS late-onset disease (LOD) from June to September 2015 in an Italian NICU.METHODS: During the outbreak, possible sources of transmission (equipment, feeding bottles and breast pumps) were swabbed. Specimens from throat and rectum were collected on a weekly basis from all neonates admitted to NICU. Colonized or infected neonates had cohorting. Bacterial isolates were characterized by serologic and molecular typing methods.RESULTS: GBS was isolated in 2 full-term and 7 preterm neonates. Strains belonged to serotype III, with 3 different sequence types (ST17, ST182 and ST19). Full-term neonates were colonized with GBS strains unrelated to the clusters (ST182 and ST19). Two distinct ST17 strains caused 2 clusters in preterm neonates: a first cluster with 1 case of LOD and a second, larger cluster with 6 LOD in 5 neonates (one of them had recurrence). ST17 strains were isolated from vaginorectal and milk samples of 2 mothers. Two preterm neonates had no evidence of colonization for weeks, until they presented with LOD.CONCLUSIONS: Molecular analyses identified the presence of multiclonal GBS strains and 2 clusters of 7 cases of GBS-LOD. The dynamics of transmission of GBS within the NICU were complex. Breast milk was suspected to be one of the possible sources. In a research setting, the screening of GBS carrier mothers who deliver very preterm could contribute to the tracking of GBS transmission
    corecore