13 research outputs found

    Distinguishing parity-switching mechanisms in a superconducting qubit

    Full text link
    Single-charge tunneling is a decoherence mechanism affecting superconducting qubits, yet the origin of excess quasiparticle excitations (QPs) responsible for this tunneling in superconducting devices is not fully understood. We measure the flux dependence of charge-parity (or simply, ``parity'') switching in an offset-charge-sensitive transmon qubit to identify the contributions of photon-assisted parity switching and QP generation to the overall parity-switching rate. The parity-switching rate exhibits a qubit-state-dependent peak in the flux dependence, indicating a cold distribution of excess QPs which are predominantly trapped in the low-gap film of the device. Moreover, we find that the photon-assisted process contributes significantly to both parity switching and the generation of excess QPs by fitting to a model that self-consistently incorporates photon-assisted parity switching as well as inter-film QP dynamics

    Learning-based Calibration of Flux Crosstalk in Transmon Qubit Arrays

    Full text link
    Superconducting quantum processors comprising flux-tunable data and coupler qubits are a promising platform for quantum computation. However, magnetic flux crosstalk between the flux-control lines and the constituent qubits impedes precision control of qubit frequencies, presenting a challenge to scaling this platform. In order to implement high-fidelity digital and analog quantum operations, one must characterize the flux crosstalk and compensate for it. In this work, we introduce a learning-based calibration protocol and demonstrate its experimental performance by calibrating an array of 16 flux-tunable transmon qubits. To demonstrate the extensibility of our protocol, we simulate the crosstalk matrix learning procedure for larger arrays of transmon qubits. We observe an empirically linear scaling with system size, while maintaining a median qubit frequency error below 300300 kHz

    Characterization of superconducting through-silicon vias as capacitive elements in quantum circuits

    Full text link
    The large physical size of superconducting qubits and their associated on-chip control structures presents a practical challenge towards building a large-scale quantum computer. In particular, transmons require a high-quality-factor shunting capacitance that is typically achieved by using a large coplanar capacitor. Other components, such as superconducting microwave resonators used for qubit state readout, are typically constructed from coplanar waveguides which are millimeters in length. Here we use compact superconducting through-silicon vias to realize lumped element capacitors in both qubits and readout resonators to significantly reduce the on-chip footprint of both of these circuit elements. We measure two types of devices to show that TSVs are of sufficient quality to be used as capacitive circuit elements and provide a significant reductions in size over existing approaches

    High-Fidelity, Frequency-Flexible Two-Qubit Fluxonium Gates with a Transmon Coupler

    Full text link
    We propose and demonstrate an architecture for fluxonium-fluxonium two-qubit gates mediated by transmon couplers (FTF, for fluxonium-transmon-fluxonium). Relative to architectures that exclusively rely on a direct coupling between fluxonium qubits, FTF enables stronger couplings for gates using non-computational states while simultaneously suppressing the static controlled-phase entangling rate (ZZZZ) down to kHz levels, all without requiring strict parameter matching. Here we implement FTF with a flux-tunable transmon coupler and demonstrate a microwave-activated controlled-Z (CZ) gate whose operation frequency can be tuned over a 2 GHz range, adding frequency allocation freedom for FTF's in larger systems. Across this range, state-of-the-art CZ gate fidelities were observed over many bias points and reproduced across the two devices characterized in this work. After optimizing both the operation frequency and the gate duration, we achieved peak CZ fidelities in the 99.85-99.9\% range. Finally, we implemented model-free reinforcement learning of the pulse parameters to boost the mean gate fidelity up to 99.922±0.009%99.922\pm0.009\%, averaged over roughly an hour between scheduled training runs. Beyond the microwave-activated CZ gate we present here, FTF can be applied to a variety of other fluxonium gate schemes to improve gate fidelities and passively reduce unwanted ZZZZ interactions.Comment: 23 pages, 16 figure

    Demonstration of tunable three-body interactions between superconducting qubits

    Full text link
    Nonpairwise multi-qubit interactions present a useful resource for quantum information processors. Their implementation would facilitate more efficient quantum simulations of molecules and combinatorial optimization problems, and they could simplify error suppression and error correction schemes. Here we present a superconducting circuit architecture in which a coupling module mediates 2-local and 3-local interactions between three flux qubits by design. The system Hamiltonian is estimated via multi-qubit pulse sequences that implement Ramsey-type interferometry between all neighboring excitation manifolds in the system. The 3-local interaction is coherently tunable over several MHz via the coupler flux biases and can be turned off, which is important for applications in quantum annealing, analog quantum simulation, and gate-model quantum computation.Comment: 14 pages, 11 figure

    Evolution of 1/f1/f Flux Noise in Superconducting Qubits with Weak Magnetic Fields

    Full text link
    The microscopic origin of 1/f1/f magnetic flux noise in superconducting circuits has remained an open question for several decades despite extensive experimental and theoretical investigation. Recent progress in superconducting devices for quantum information has highlighted the need to mitigate sources of qubit decoherence, driving a renewed interest in understanding the underlying noise mechanism(s). Though a consensus has emerged attributing flux noise to surface spins, their identity and interaction mechanisms remain unclear, prompting further study. Here we apply weak in-plane magnetic fields to a capacitively-shunted flux qubit (where the Zeeman splitting of surface spins lies below the device temperature) and study the flux-noise-limited qubit dephasing, revealing previously unexplored trends that may shed light on the dynamics behind the emergent 1/f1/f noise. Notably, we observe an enhancement (suppression) of the spin-echo (Ramsey) pure dephasing time in fields up to B=100 GB=100~\text{G}. With direct noise spectroscopy, we further observe a transition from a 1/f1/f to approximately Lorentzian frequency dependence below 10 Hz and a reduction of the noise above 1 MHz with increasing magnetic field. We suggest that these trends are qualitatively consistent with an increase of spin cluster sizes with magnetic field. These results should help to inform a complete microscopic theory of 1/f1/f flux noise in superconducting circuits

    Development of Magnetic Nanoparticles as Microwave-Specific Catalysts for the Rapid, Low-Temperature Synthesis of Formalin Solutions

    No full text
    A series of heterogeneous catalyst materials possessing good microwave absorption properties were investigated for their activity as oxidation catalysts under microwave irradiation. These catalysts, a series of nanoscale magnetic spinel oxides of the composition MCr<sub>2</sub>O<sub>4</sub> (M = Cu, Co, Fe), were irradiated in aqueous methanol solution (1:1 MeOH:H<sub>2</sub>O v:v). This resulted in rapid conversion of methanol to formaldehyde, directly generating aqueous formalin solutions. The catalytic reaction occurred under relatively mild conditions (1 atm O<sub>2</sub>, 60 °C), with irradiation times of 80 min converting 24.5%, 17.7%, and 13.2% of the available methanol to formaldehyde by the Cu, Fe, and Co chromite spinel catalysts, respectively. Importantly, reactions run under identical conditions of concentration, time, and temperature using traditional convective heating yielded dramatically lower amounts of conversions; specifically, 1.0% and 0.21% conversions were observed with Cu and Co spinels, and no observable thermal products were obtained from the Fe spinels. This work provides a clear demonstration that microwave-driven catalysis can yield enhanced reactivity and can afford new catalytic pathways
    corecore