Abstract

The large physical size of superconducting qubits and their associated on-chip control structures presents a practical challenge towards building a large-scale quantum computer. In particular, transmons require a high-quality-factor shunting capacitance that is typically achieved by using a large coplanar capacitor. Other components, such as superconducting microwave resonators used for qubit state readout, are typically constructed from coplanar waveguides which are millimeters in length. Here we use compact superconducting through-silicon vias to realize lumped element capacitors in both qubits and readout resonators to significantly reduce the on-chip footprint of both of these circuit elements. We measure two types of devices to show that TSVs are of sufficient quality to be used as capacitive circuit elements and provide a significant reductions in size over existing approaches

    Similar works

    Full text

    thumbnail-image

    Available Versions