15 research outputs found

    Altered Cx43 expression during myocardial adaptation to acute and chronic volume overloading

    No full text
    Gap-junctions are specialized regions of intercellular contacts allowing electrical impulse propagation among adjacent cardiomyocytes. Connexin43 (Cx43) is the predominant gap-junction protein in the working ventricular myocardium and its reduced expression has been extensively implicated in the genesis of conduction abnormalities and re-entry arrhythmia of chronically hypertrophied hearts. In contrast, data on the role played by this protein during cardiac remodeling and early phases of developing hypertrophy are lacking. Therefore, in the present study, we investigated this issue using an experimental model of pig left ventricle (LV) volume overloading consisting in the creation of an aorto-cava fistula. At scheduled times (6, 24, 48, 96, 168 h, and 2, 3 months after surgery) echocardiographic and haemodynamic measurements were performed and myocardial biopsies were taken for the morphological and biochemical analyses. When faced with the increased load, pig myocardium underwent an initial period (from 6 up to 48 h) of remarkable tissue remodeling consisting in the occurrence of cardiomyocyte damage and apoptosis. After that time, the tissue developed a hypertrophic response that was associated with early dynamic changes (up-regulation) in Cx43 protein expression, as demonstrated by Western blot and confocal immunofluorescence analyses. However, an initial transient increase of this protein was also found after 6 h from surgery. With the progression of LV hypertrophy (from 168 hr up to 3 months), a reduction in the myocardial Cx43 expression was, instead, observed. The increased expression of Cx43 protein during acute hypertrophic response was associated with a corresponding increase in the levels of its specific mRNA, as detected by RT-PCR. We concluded that upregulation of Cx43 gap-junction protein could represent an immediate compensatory response to support the new working conditions in the early stages of ventricular overloading

    Picotamide, a combined inhibitor of thromboxane A2 synthase and receptor, reduces 2-year mortality in diabetics with peripheral arterial disease : the DAVID study

    No full text
    AIMS: Patients with diabetes are at excessive risk of mortality and cardiovascular morbidity. Previous studies suggest that aspirin may be less effective in diabetic patients. In this multi-centre, randomized, double blind trial picotamide, a dual inhibitor of thromboxane A2 synthase and receptor, was compared with aspirin for the prevention of mortality and major cardiovascular events in diabetics with peripheral arterial disease (PAD). METHODS AND RESULTS: A total of 1209 adults aged 40-75 years with type 2 diabetes and PAD were randomized to receive picotamide (600 mg bid) or aspirin (320 mg od) for 24 months. The cumulative incidence of the 2 years overall mortality was significantly lower amongst patients who received picotamide (3.0%) than in those who received aspirin (5.5%) with a relative risk ratio for picotamide versus aspirin of 0.55 (95% CI: 0.31-0.98%). Events were reported in 43 patients (7.1%) on picotamide and 53 (8.7%) on aspirin. The combined endpoint of mortality and morbidity had a slightly lower incidence in the picotamide group but this difference did not reach statistical significance. CONCLUSION: Picotamide is significantly more effective than aspirin in reducing overall mortality in type 2 diabetic patients with associated PAD

    Exercício de força ativa a via AKT/mTor pelo receptor de angiotensina II tipo I no músculo cardíaco de ratos Activation of AKT-mTor signaling pathways by angiotensin II receptor type 1 after a session of strength exercise in cardiac muscle of rats

    Get PDF
    O receptor de angiotensina II tipo I (AT1) tem uma importante participação no desenvolvimento da hipertrofia cardíaca. Em um trabalho publicado anteriormente, por nosso grupo, demonstramos que o bloqueio do receptor AT1 durante o treinamento de força inibiu a hipertrofia cardíaca em ratos. Por isso, o objetivo deste trabalho foi estudar a participação do receptor AT1 na ativação de vias de sinalização intracelular relacionadas com o aumento da síntese de proteína em ratos submetidos a uma sessão de exercício de força. Para isso, realizamos um experimento com seis grupos de animais (n = 6; cada): controle (Con), exercitado e sacrificado cinco minutos após o exercício (Exe 5), exercitado e sacrificado 30 minutos após o exercício (Exe 30), controle tratado com losartan (Con Los), tratado com losartan, exercitado e sacrificado cinco minutos após o exercício (Exe 5 Los), tratado com losartan, exercitado e sacrificado 30 minutos após o exercício (Exe 30 Los). Os resultados mostram que no grupo Exe 5 e Exe 30 ocorreu um aumento de 63% (P < 0,05) e 62% (P < 0,05), respectivamente, na fosforilação da proteína AKT comparado com o grupo controle. Enquanto a fosforilação da mTor foi aumentada 65% (P < 0,05) somente no grupo Exe 30 comparado com o grupo controle, sendo estes efeitos bloqueados pelo uso do losartan nos grupos Exe 5 Los e Exe 30 Los. Portanto, esses resultados, juntamente com nossos resultados prévios, demonstram que o receptor AT1 tem participação na ativação da AKT e mTOR após uma sessão de exercício de força.<br>The angiotensin II type I (AT1) receptor has an important participation in the development of cardiac hypertrophy. Previously, we have shown that AT1 receptor participates in the cardiac hypertrophy induced by resistance training in rats. Here, we studied the involvement of AT1 receptor in the activation of intracellular signaling pathways related to the concentric HC in rats submitted to a session of strength exercise. Male Wistar rats were divided into 6 groups (n= 6 each): control (Con); exercised and killed 5 minutes after exercise (Exe 5); exercised and killed 30 minutes after exercise (Exe 30); control treated with Losartan (Con Los); treated with Losartan, exercised and killed 5 minutes after the exercise (Exe Los 5); treated with Losartan, exercised and killed 30 minutes after training (Exe Los 30). The results show that phosphorylation activity of AKT in group Exe 5 and Exe 30 increased 63% (P < 0.05) and 62% (P < 0.05), respectively, compared with Con. Whereas the phosphorylation of mTOR was increased 65% (P < 0.05), compared to Con, only in the group Exe 30. Furthermore, these effects were blocked by losartan treatment in groups Exe Los 5 and Exe Los 30. These results, together with ours previous data shows that the AT1 receptor has an role in the activation of AKT and mTOR pathway after a session of strength exercise
    corecore