105 research outputs found
Ultrafast dynamic conductivity and scattering rate saturation of photoexcited charge carriers in silicon investigated with a midinfrared continuum probe
We employ ultra-broadband terahertz-midinfrared probe pulses to characterize
the optical response of photoinduced charge-carrier plasmas in high-resistivity
silicon in a reflection geometry, over a wide range of excitation densities
(10^{15}-10^{19} cm^{-3}) at room temperature. In contrast to conventional
terahertz spectroscopy studies, this enables one to directly cover the
frequency range encompassing the resultant plasma frequencies. The intensity
reflection spectra of the thermalized plasma, measured using sum-frequency
(up-conversion) detection of the probe pulses, can be modeled well by a
standard Drude model with a density-dependent momentum scattering time of
approx. 200 fs at low densities, reaching approx. 20 fs for densities of
approx. 10^{19} cm^{-3}, where the increase of the scattering rate saturates.
This behavior can be reproduced well with theoretical results based on the
generalized Drude approach for the electron-hole scattering rate, where the
saturation occurs due to phase-space restrictions as the plasma becomes
degenerate. We also study the initial sub-picosecond temporal development of
the Drude response, and discuss the observed rise in the scattering time in
terms of initial charge-carrier relaxation, as well as the optical response of
the photoexcited sample as predicted by finite-difference time-domain
simulations.Comment: 9 pages, 4 figure
Casimir interactions in graphene systems
The non-retarded Casimir interaction (van der Waals interaction) between two
free standing graphene sheets as well as between a graphene sheet and a
substrate is determined. An exact analytical expression is given for the
dielectric function of graphene along the imaginary frequency axis within the
random phase approximation for arbitrary frequency, wave vector, and doping.Comment: 4 pages, 4 figure
Non-Perturbative Theory of Dispersion Interactions
Some open questions exist with fluctuation-induced forces between extended
dipoles. Conventional intuition derives from large-separation perturbative
approximations to dispersion force theory. Here we present a full
non-perturbative theory. In addition we discuss how one can take into account
finite dipole size corrections. It is of fundamental value to investigate the
limits of validity of the perturbative dispersion force theory.Comment: 9 pages, no figure
Retardation turns the van der Waals attraction into Casimir repulsion already at 3 nm
Casimir forces between surfaces immersed in bromobenzene have recently been
measured by Munday et al. Attractive Casimir forces were found between gold
surfaces. The forces were repulsive between gold and silica surfaces. We show
the repulsion is due to retardation effects. The van der Waals interaction is
attractive at all separations. The retardation driven repulsion sets in already
at around 3 nm. To our knowledge retardation effects have never been found at
such a small distance before. Retardation effects are usually associated with
large distances
Sign of the Casimir-Polder interaction between atoms and oil-water interfaces: Subtle dependence on dielectric properties
We demonstrate that Casimir-Polder energies between noble gas atoms
(dissolved in water) and oil-water interfaces are highly surface specific. Both
repulsion (e.g. hexane) and attraction (e.g. glycerine and cyclodecane) is
found with different oils. For several intermediate oils (e.g. hexadecane,
decane, and cyclohexane) both attraction and repulsion can be found in the same
system. Near these oil-water interfaces the interaction is repulsive in the
non-retarded limit and turns attractive at larger distances as retardation
becomes important. These highly surface specific interactions may have a role
to play in biological systems where the surface may be more or less accessible
to dissolved atoms.Comment: 5 pages, 6 figure
Circular Optical Nanoantennas: An Analytical Theory
An entirely analytical theory is provided for describing the resonance
properties of optical nanoantennas made of a stack of homogeneous discs, i.e.
circular patch nanoantennas. It consists in analytically calculating the phase
accumulation of surface plasmon polaritons across the resonator and an
additional contribution from the complex reflection coefficient at the antenna
termination. This makes the theory self-contained with no need for fitting
parameters. The very antenna resonances are then explained by a simple
Fabry-Perot resonator model. Predictions are compared to rigorous simulations
and show excellent agreement. Using this analytical model, circular antennas
can be tuned by varying the composition of the stack
Comment on "On the temperature dependence of the Casimir effect"
Recently, Brevik et al. [Phys. Rev. E 71, 056101 (2005)] adduced arguments
against the traditional approach to the thermal Casimir force between real
metals and in favor of one of the alternative approaches. The latter assumes
zero contribution from the transverse electric mode at zero frequency in
qualitative disagreement with unity as given by the thermal quantum field
theory for ideal metals. Those authors claim that their approach is consistent
with experiments as well as with thermodynamics. We demonstrate that these
conclusions are incorrect. We show specifically that their results are
contradicted by four recent experiments and also violate the third law of
thermodynamics (the Nernst heat theorem).Comment: 11 pages, 3 figures, changed in accordance with the final published
versio
What is the Temperature Dependence of the Casimir Effect?
There has been recent criticism of our approach to the Casimir force between
real metallic surfaces at finite temperature, saying it is in conflict with the
third law of thermodynamics and in contradiction with experiment. We show that
these claims are unwarranted, and that our approach has strong theoretical
support, while the experimental situation is still unclear.Comment: 6 pages, REVTeX, final revision includes two new references and
related discussio
Casimir-Lifshitz interaction between ZnO and SiO2 nanorods in bromobenzene: retardation effects turn the interaction repulsive at intermediate separations
We consider the interaction between a ZnO nanorod and a SiO2 nanorod in
bromobenzene. Using optical data for the interacting objects and ambient we
calculate the force - from short-range attractive van der Waals force to
intermediate range repulsive Casimir-Lifshitz force to long range entropically
driven attraction. The nonretarded van der Waals interaction is attractive at
all separations. We demonstrate a retardation driven repulsion at intermediate
separations. At short separations (in the nonretarded limit) and at large
separations (in the classical limit) the interaction is attractive. These
effects can be understood from an analysis of multiple crossings of the
dielectric functions of the three media as functions of imaginary frequencies.Comment: 3.5 pages, 3 figure
- …