2,068 research outputs found

    Symmetry-preserving contact interaction model for heavy-light mesons

    Full text link
    We use a symmetry-preserving regularization method of ultraviolet divergences in a vector-vector contact interac- tion model for low-energy QCD. The contact interaction is a representation of nonperturbative kernels used Dyson-Schwinger and Bethe-Salpeter equations. The regularization method is based on a subtraction scheme that avoids standard steps in the evaluation of divergent integrals that invariably lead to symmetry violation. Aiming at the study of heavy-light mesons, we have implemented the method to the pseudoscalar pion and Kaon mesons. We have solved the Dyson-Schwinger equation for the u, d and s quark propagators, and obtained the bound-state Bethe-Salpeter amplitudes in a way that the Ward-Green-Takahashi identities reflecting global symmetries of the model are satisfied for arbitrary routing of the momenta running in loop integrals

    The Precision Determination of Invisible-Particle Masses at the LHC

    Full text link
    We develop techniques to determine the mass scale of invisible particles pair-produced at hadron colliders. We employ the constrained mass variable m_2C, which provides an event-by-event lower-bound to the mass scale given a mass difference. We complement this variable with a new variable m_2C,UB which provides an additional upper bound to the mass scale, and demonstrate its utility with a realistic case study of a supersymmetry model. These variables together effectively quantify the `kink' in the function Max m_T2 which has been proposed as a mass-determination technique for collider-produced dark matter. An important advantage of the m_2C method is that it does not rely simply on the position at the endpoint, but it uses the additional information contained in events which lie far from the endpoint. We found the mass by comparing the HERWIG generated m_2C distribution to ideal distributions for different masses. We find that for the case studied, with 100 fb^-1 of integrated luminosity (about 400 signal events), the invisible particle's mass can be measured to a precision of 4.1 GeV. We conclude that this technique's precision and accuracy is as good as, if not better than, the best known techniques for invisible-particle mass-determination at hadron colliders.Comment: 20 pages, 11 figures, minor correction

    DIRK Schemes with High Weak Stage Order

    Full text link
    Runge-Kutta time-stepping methods in general suffer from order reduction: the observed order of convergence may be less than the formal order when applied to certain stiff problems. Order reduction can be avoided by using methods with high stage order. However, diagonally-implicit Runge-Kutta (DIRK) schemes are limited to low stage order. In this paper we explore a weak stage order criterion, which for initial boundary value problems also serves to avoid order reduction, and which is compatible with a DIRK structure. We provide specific DIRK schemes of weak stage order up to 3, and demonstrate their performance in various examples.Comment: 10 pages, 5 figure

    Any-order propagation of the nonlinear Schroedinger equation

    Full text link
    We derive an exact propagation scheme for nonlinear Schroedinger equations. This scheme is entirely analogous to the propagation of linear Schroedinger equations. We accomplish this by defining a special operator whose algebraic properties ensure the correct propagation. As applications, we provide a simple proof of a recent conjecture regarding higher-order integrators for the Gross-Pitaevskii equation, extend it to multi-component equations, and to a new class of integrators.Comment: 10 pages, no figures, submitted to Phys. Rev.

    OptEEmAL: Decision-Support Tool for the Design of Energy Retrofitting Projects at District Level

    Get PDF
    Designing energy retrofitting actions poses an elevated number of problems, as the definition of the baseline, selection of indicators to measure performance, modelling, setting objectives, etc. This is time-consuming and it can result in a number of inaccuracies, leading to inadequate decisions. While these problems are present at building level, they are multiplied at district level, where there are complex interactions to analyse, simulate and improve. OptEEmAL proposes a solution as a decision-support tool for the design of energy retrofitting projects at district level. Based on specific input data (IFC(s), CityGML, etc.), the platform will automatically simulate the baseline scenario and launch an optimisation process where a series of Energy Conservation Measures (ECMs) will be applied to this scenario. Its performance will be evaluated through a holistic set of indicators to obtain the best combination of ECMs that complies with user's objectives. A great reduction in time and higher accuracy in the models are experienced, since they are automatically created and checked. A subjective problem is transformed into a mathematical problem; it simplifies it and ensures a more robust decision-making. This paper will present a case where the platform has been tested.This research work has been partially funded by the European Commission though the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 680676. All related information to the project is available at https://www.opteemal-project.eu

    List Coloring in the Absence of Two Subgraphs

    Get PDF
    list assignment of a graph G = (V;E) is a function L that assigns a list L(u) of so-called admissible colors to each u 2 V . The List Coloring problem is that of testing whether a given graph G = (V;E) has a coloring c that respects a given list assignment L, i.e., whether G has a mapping c : V ! f1; 2; : : :g such that (i) c(u) 6= c(v) whenever uv 2 E and (ii) c(u) 2 L(u) for all u 2 V . If a graph G has no induced subgraph isomorphic to some graph of a pair fH1;H2g, then G is called (H1;H2)-free. We completely characterize the complexity of List Coloring for (H1;H2)-free graphs
    corecore