3,965 research outputs found

    Deterministic constant-temperature dynamics for dissipative quantum systems

    Get PDF
    A novel method is introduced in order to treat the dissipative dynamics of quantum systems interacting with a bath of classical degrees of freedom. The method is based upon an extension of the Nos\`e-Hoover chain (constant temperature) dynamics to quantum-classical systems. Both adiabatic and nonadiabatic numerical calculations on the relaxation dynamics of the spin-boson model show that the quantum-classical Nos\`e-Hoover chain dynamics represents the thermal noise of the bath in an accurate and simple way. Numerical comparisons, both with the constant energy calculation and with the quantum-classical Brownian motion treatment of the bath, show that the quantum-classical Nos\`e-Hoover Chain dynamics can be used to introduce dissipation in the evolution of a quantum subsystem even with just one degree of freedom for the bath. The algorithm can be computationally advantageous in modeling, within computer simulation, the dynamics of a quantum subsystem interacting with complex molecular environments.Comment: Revised versio

    Improvement of the high-accuracy O 17 (p,α) N 14 reaction-rate measurement via the Trojan Horse method for application to O 17 nucleosynthesis

    Get PDF
    The O17(p,α)N14 and O17(p,γ)F18 reactions are of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RGs), asymptotic giant branch (AGB) stars, massive stars, and classical novae. In particular, they govern the destruction of O17 and the formation of the short-lived radioisotope F18, which is of special interest for γ-ray astronomy. At temperatures typical of the above-mentioned astrophysical scenario, T=0.01-0.1 GK for RG, AGB, and massive stars and T=0.1-0.4 GK for a classical nova explosion, the O17(p,α)N14 reaction cross section is dominated by two resonances: one at about ERcm=65 keV above the F18 proton threshold energy, corresponding to the EX=5.673 MeV level in F18, and another one at ERcm=183 keV (EX=5.786 MeV). We report on the indirect study of the O17(p,α)N14 reaction via the Trojan Horse method by applying the approach recently developed for extracting the strength of narrow resonance at ultralow energies. The mean value of the strengths obtained in the two measurements was calculated and compared with the direct data available in literature. This value was used as input parameter for reaction-rate determination and its comparison with the result of the direct measurement is also discussed in the light of the electron screening effect

    On the Geometry and Entropy of Non-Hamiltonian Phase Space

    Full text link
    We analyze the equilibrium statistical mechanics of canonical, non-canonical and non-Hamiltonian equations of motion by throwing light into the peculiar geometric structure of phase space. Some fundamental issues regarding time translation and phase space measure are clarified. In particular, we emphasize that a phase space measure should be defined by means of the Jacobian of the transformation between different types of coordinates since such a determinant is different from zero in the non-canonical case even if the phase space compressibility is null. Instead, the Jacobian determinant associated with phase space flows is unity whenever non-canonical coordinates lead to a vanishing compressibility, so that its use in order to define a measure may not be always correct. To better illustrate this point, we derive a mathematical condition for defining non-Hamiltonian phase space flows with zero compressibility. The Jacobian determinant associated with time evolution in phase space is altogether useful for analyzing time translation invariance. The proper definition of a phase space measure is particularly important when defining the entropy functional in the canonical, non-canonical, and non-Hamiltonian cases. We show how the use of relative entropies can circumvent some subtle problems that are encountered when dealing with continuous probability distributions and phase space measures. Finally, a maximum (relative) entropy principle is formulated for non-canonical and non-Hamiltonian phase space flows.Comment: revised introductio

    Triple positive breast cancer. A distinct subtype?

    Get PDF
    Breast cancer is a heterogeneous disease, and within the HER-2 positive subtype this is highly exemplified by the presence of substantial phenotypical and clinical heterogeneity, mostly related to hormonal receptor (HR) expression. It is well known how HER-2 positivity is commonly associated with a more aggressive tumor phenotype and decreased overall survival and, moreover, with a reduced benefit from endocrine treatment. Preclinical studies corroborate the role played by functional crosstalks between HER-2 and estrogen receptor (ER) signaling in endocrine resistance and, more recently, the activation of ER signaling is emerging as a possible mechanism of resistance to HER-2 blocking agents. Indeed, HER-2 positive breast cancer heterogeneity has been suggested to underlie the variability of response not only to endocrine treatments, but also to HER-2 blocking agents. Among HER-2 positive tumors, HR status probably defines two distinct subtypes, with dissimilar clinical behavior and different sensitivity to anticancer agents. The triple positive subtype, namely, ER/PgR/Her-2 positive tumors, could be considered the subset which most closely resembles the HER-2 negative/HR positive tumors, with substantial differences in biology and clinical outcome. We argue on whether in this subgroup the "standard" treatment may be considered, in selected cases, i.e., small tumors, low tumor burden, high expression of both hormonal receptors, an overtreatment. This article review the existing literature on biologic and clinical data concerning the HER-2/ER/PgR positive tumors, in an attempt to better define the HER-2 subtypes and to optimize the use of HER-2 targeted agents, chemotherapy and endocrine treatments in the various subsets

    Molecular Structures in T=1 states of 10B

    Full text link
    Multi-center (molecular) structures can play an important role in light nuclei. The highly deformed rotational band in 10Be with band head at 6.179 MeV has been observed recently and suggested to have an exotic alpha:2n:alpha configuration. A search for states with alpha:pn:alpha two-center molecular configurations in 10B that are analogous to the states with alpha:2n:alpha structure in 10Be has been performed. The T=1 isobaric analog states in 10B were studied in the excitation energy range of E=8.7-12.1 MeV using the reaction 1H(9Be,alpha)6Li*(T=1, 0+, 3.56 MeV). An R-matrix analysis was used to extract parameters for the states observed in the (p,alpha) excitation function. Five T=1 states in 10B have been identified. The known 2+ and 3- states at 8.9 MeV have been observed and their partial widths have been measured. The spin-parities and partial widths for three higher lying states were determined. Our data support theoretical predictions that the 2+ state at 8.9 MeV (isobaric analog of the 7.54 MeV state in 10Be) is a highly clustered state and can be identified as a member of the alpha:np:alpha rotational band. The next member of this band, the 4+ state, has not been found. A very broad 0+ state at 11 MeV that corresponds to pure alpha+6Li(0+,T=1) configuration is suggested and it might be related to similar structures found in 12C, 18O and 20Ne.Comment: 10 pages, 10 figures, accepted in Physical Review

    Quantifying cognitive-motor interference in virtual reality training after stroke: the role of interfaces

    Get PDF
    Globally, stroke is the second leading cause of death above the age of 60 years, with the actual number of strokes to increase because of the ageing population. Stroke results into chronic conditions, loss of independence, affecting both the families of stroke survivors but also public health systems. Virtual Reality (VR) for rehabilitation is considered a novel and effective low-cost approach to re-train motor and cognitive function through strictly defined training tasks in a safe simulated environment. However, little is known about how the choice of VR interfacing technology affects motor and cognitive performance, or what the most cost-effective rehabilitation approach for patients with different prognostics is. In this paper we assessed the effect of four different interfaces in the training of the motor and cognitive domains within a VR neurorehabilitation task. In this study we have evaluated the effect of training using 2-dimensional and 3-dimensional as well as traditional and natural user interfaces with both stroke survivors and healthy participants. Results indicate that 3-dimensional interfaces contribute towards better results in the motor domain at the cost of lower performance in the cognitive domain, suggesting the use 2-dimensional natural user interfaces as a trade-off. Our results provide useful pointers for future directions towards a cost-effective and meaningful interaction in virtual rehabilitation tasks in both motor and cognitive domains.info:eu-repo/semantics/publishedVersio

    Behavior modeling for a beacon-based indoor location system

    Get PDF
    In this work we performed a comparison between two different approaches to track a person in indoor environments using a locating system based on BLE technology with a smartphone and a smartwatch as monitoring devices. To do so, we provide the system architecture we designed and describe how the different elements of the proposed system interact with each other. Moreover, we have evaluated the system’s performance by computing the mean percentage error in the detection of the indoor position. Finally, we present a novel location prediction system based on neural embeddings, and a soft-attention mechanism, which is able to predict user’s next location with 67% accuracy

    Extreme temperature influence on low velocity impact damage and residual flexural properties of CFRP

    Get PDF
    In this work, the behavior of carbon fiber reinforced polymer composites (CFRPs) interleaved with electrospun veils under low velocity impact (LVI) conditions and extreme environmental temperatures was investigated. 2/2 twill carbon fiber/epoxy laminates were subjected to LVI at three energy levels (10, 20, and 30 J), and three temperatures (−50°C, room temperature, and 100°C). Two interleaved configurations were explored (six veils placed symmetrically with respect to the middle plane of the laminate and with respect to the external layers of the laminate). Particularly at room temperature and up to 20 J, nanofibrous interlayers effectively reduced localized deformation (by about 13.0%) and delamination (by about 12.2%) when positioned in the outer ply interleaved configuration compared to the reference laminate. At 100°C, this effect is maintained at 10 J, preventing an increase in the delaminated area. At −50°C and 10 J, the promotion of delamination prevented back surface fiber failure. Regarding post-impact flexural properties, the presence of nanoveils ensured superior mechanical properties compared to the corresponding reference laminate impacted at the same conditions, demonstrating their efficacy in enhancing the damage tolerance of the overall laminate

    Measurement of the 20 and 90 keV resonances in the 18O(p,α)15{}^{18}{\rm O}(p,\alpha){}^{15}N reaction via THM

    Full text link
    The 18O(p,α)15N^{18}{\rm O}(p,\alpha)^{15}{\rm N} reaction is of primary importance in several astrophysical scenarios, including fluorine nucleosynthesis inside AGB stars as well as oxygen and nitrogen isotopic ratios in meteorite grains. Thus the indirect measurement of the low energy region of the 18O(p,α)15N^{18}{\rm O}(p,\alpha)^{15}{\rm N} reaction has been performed to reduce the nuclear uncertainty on theoretical predictions. In particular the strength of the 20 and 90 keV resonances have been deduced and the change in the reaction rate evaluated.Comment: 4 pages, 4 figures, submitted to PR

    The effects of land use changes on streams and rivers in mediterranean climates

    Get PDF
    We reviewed the literature on the effects of land use changes on mediterranean river ecosystems (med-rivers) to provide a foundation and directions for future research on catchment management during times of rapid human population growth and climate change. Seasonal human demand for water in mediterranean climate regions (med-regions) is high, leading to intense competition for water with riverine communities often containing many endemic species. The responses of river communities to human alterations of land use, vegetation, hydrological, and hydrochemical conditions are similar in mediterranean and other climatic regions. High variation in hydrological regimes in med-regions, however, tends to exacerbate the magnitude of these responses. For example, land use changes promote longer dry season flows, concentrating contaminants, allowing the accumulation of detritus, algae, and plants, and fostering higher temperatures and lower dissolved oxygen levels, all of which may extirpate sensitive native species. Exotic species often thrive in med-rivers altered by human activity, further homogenizing river communities worldwide. We recommend that future research rigorously evaluate the effects of management and restoration practices on river ecosystems, delineate the cause-effect pathways leading from human perturbations to stream biological communities, and incorporate analyses of the effects of scale, land use heterogeneity, and high temporal hydrological variability on stream communities. © 2012 Springer Science+Business Media Dordrecht
    • …
    corecore