73 research outputs found

    Emergent Lorentz invariance with chiral fermions

    Full text link
    We study renormalization group flows in strongly interacting field theories with fermions that correspond to transitions between a theory without Lorentz invariance at high energies down to a theory with approximate Lorentz symmetry in the infrared. Holographic description of the strong coupling is used. The emphasis is made on emergence of chiral fermions in the low-energy theory.Comment: 28 pages, 2 figure

    On stability of electroweak vacuum during inflation

    Get PDF
    We study Coleman-De Luccia tunneling of the Standard Model Higgs field during inflation in the case when the electroweak vacuum is metastable. We verify that the tunneling rate is exponentially suppressed. The main contribution to the suppression is the same as in flat space-time. We analytically estimate the corrections due to the expansion of the universe and an effective mass term in the Higgs potential that can be present at inflation.Comment: 9 pages, 2 figures, dependence of the grav. corrections to the bounce action on non-minimal coupling updated, corresponding references adde

    Models of non-relativistic quantum gravity: the good, the bad and the healthy

    Get PDF
    Horava's proposal for non-relativistic quantum gravity introduces a preferred time foliation of space-time which violates the local Lorentz invariance. The foliation is encoded in a dynamical scalar field which we call `khronon'. The dynamics of the khronon field is sensitive to the symmetries and other details of the particular implementations of the proposal. In this paper we examine several consistency issues present in three non-relativistic gravity theories: Horava's projectable theory, the healthy non-projectable extension, and a new extension related to ghost condensation. We find that the only model which is free from instabilities and strong coupling is the non-projectable one. We elaborate on the phenomenology of the latter model including a discussion of the couplings of the khronon to matter. In particular, we obtain the parameters of the post-Newtonian expansion in this model and show that they are compatible with current observations.Comment: 50 pages, JHEP styl

    Semiclassical S-matrix for black holes

    Full text link
    We propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(-B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states. The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordstrom black hole. Our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.Comment: 41 pages, 13 figures; Introduction rewritten, references added; journal versio

    Constraints on violation of Lorentz invariance from atmospheric showers initiated by multi-TeV photons

    Full text link
    We discuss the effect of hypothetical violation of Lorentz invariance at high energies on the formation of atmospheric showers by very-high-energy gamma rays. In the scenario where Lorentz invariance violation leads to a decrease of the photon velocity with energy the formation of the showers is suppressed compared to the Lorentz invariant case. Absence of such suppression in the high-energy part of spectrum of the Crab nebula measured independently by HEGRA and H.E.S.S. collaborations is used to set lower bounds on the energy scale of Lorentz invariance violation. These bounds are competitive with the strongest existing constraints obtained from timing of variable astrophysical sources and the absorption of TeV photons on the extragalactic background light. They will be further improved by the next generation of multi-TeV gamma-ray observatories.Comment: 21 pages, 4 figures. References adde

    Testing Lorentz invariance of dark matter with satellite galaxies

    Full text link
    We develop the framework for testing Lorentz invariance in the dark matter sector using galactic dynamics. We consider a Lorentz violating (LV) vector field acting on the dark matter component of a satellite galaxy orbiting in a host halo. We introduce a numerical model for the dynamics of satellites in a galactic halo and for a galaxy in a rich cluster to explore observational consequences of such an LV field. The orbital motion of a satellite excites a time dependent LV force which greatly affects its internal dynamics. Our analysis points out key observational signatures which serve as probes of LV forces. These include modifications to the line of sight velocity dispersion, mass profiles and shapes of satellites. With future data and a more detailed modeling these signatures can be exploited to constrain a new region of the parameter space describing the LV in the dark matter sector.Comment: 27 pages, 11 figures, 2 tables, 1 appendix. Minor corrections in section 4.3.

    Gravity Cutoff in Theories with Large Discrete Symmetries

    Get PDF
    We set an upper bound on the gravitational cutoff in theories with exact quantum numbers of large N periodicity, such as Z_N discrete symmetries. The bound stems from black hole physics. It is similar to the bound appearing in theories with N particle species, though a priori, a large discrete symmetry does not imply a large number of species. Thus, there emerges a potentially wide class of new theories, that address the hierarchy problem by lowering the gravitational cutoff due to existence of large Z_{10^32}-type symmetries.Comment: example and discussion adde

    Time-Sliced Perturbation Theory for Large Scale Structure I: General Formalism

    Full text link
    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein--de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.Comment: 29 pages, 2 figures, discussion on IR safety expanded, appendix C added; version published in JCA

    On constraining the speed of gravitational waves following GW150914

    Full text link
    We point out that the observed time delay between the detection of the signal at the Hanford and Livingston LIGO sites from the gravitational wave event GW150914 places an upper bound on the speed of propagation of gravitational waves, cgw≲1.7c_{gw}\lesssim 1.7 in the units of speed of light. Combined with the lower bound from the absence of gravitational Cherenkov losses by cosmic rays that rules out most of subluminal velocities, this gives a model-independent double-sided constraint 1≲cgw≲1.71\lesssim c_{gw}\lesssim 1.7. We compare this result to model-specific constraints from pulsar timing and cosmology.Comment: 3 pages, 1 figure, references adde

    Completing Lorentz violating massive gravity at high energies

    Full text link
    Theories with massive gravitons are interesting for a variety of physical applications, ranging from cosmological phenomena to holographic modeling of condensed matter systems. To date, they have been formulated as effective field theories with a cutoff proportional to a positive power of the graviton mass m_g and much smaller than that of the massless theory (M_P ~ 10^19 GeV in the case of general relativity). In this paper we present an ultraviolet completion for massive gravity valid up to a high energy scale independent of the graviton mass. The construction is based on the existence of a preferred time foliation combined with spontaneous condensation of vector fields. The perturbations of these fields are massive and below their mass the theory reduces to a model of Lorentz violating massive gravity. The latter theory possesses instantaneous modes whose consistent quantization we discuss in detail. We briefly study some modifications to gravitational phenomenology at low-energies. The homogeneous cosmological solutions are the same as in the standard cosmology. The gravitational potential of point sources agrees with the Newtonian one at distances small with respect to m_g^(-1). Interestingly, it becomes repulsive at larger distances.Comment: 33 pages, 3 figures; to appear in a special issue of JETP dedicated to the 60th birthday of Valery Rubakov; minor changes with respect to v1, references update
    • …
    corecore