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We set an upper bound on the gravitational cutoff in theories with exact quantum numbers of large N

periodicity, such as ZN discrete symmetries. The bound stems from black hole physics. It is similar to the

bound appearing in theories with N particle species, though a priori, a large discrete symmetry does not

imply a large number of species. Thus, there emerges a potentially wide class of new theories that address

the hierarchy problem by lowering the gravitational cutoff due to the existence of large Z1032 -type

symmetries.
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Introduction.—Black hole (BH) physics is a powerful
tool for extracting nonperturbative information about mi-
croscopic structure of the theory. As examples of such use
of BHs one may list the argument about violation of
continuous global symmetries in gravitational theories
[1], the bound on the entropy of bounded systems [2],
and the constraints on possible violation of Lorentz invari-
ance [3,4]. Yet another example [5] is the restriction on the
number N and mass M of particle species, which in the
case of stable species and large N reads

NM2 & M2
P; (1)

up to a factor that scales as � lnN. Here MP is the Planck
mass.

As also shown in [5], the same BH bound applies even to
a single species of mass M that carries an exactly con-
served quantum number (not associated with any long-
range classical gauge force) of periodicity N. An example
of such a quantum number can be a discrete gauge sym-
metry ZN [6,7] or a quantum hair under some massive
integer spin field [8]. In what follows, we shall investigate
this situation. Thus, unless otherwise stated, N will denote
periodicity of ZN (or of some other exact quantum number)
and not the number of particle species, and the bound (1)
should be understood accordingly.

The above bound is applicable, in particular, to scalar
fields and implies that masses of N scalar fields, or of a
single scalar field charged under a ZN symmetry, are

automatically limited by MP=
ffiffiffiffi

N
p

. By naturalness argu-
ments, the presence of light scalar fields suggests the
existence of some new stabilizing physics at that scale.
For the case of many species this statement was made
rigorous in [9] where it was shown that in a theory with
large number of species the gravitational cutoff comes

down to MP=
ffiffiffiffi

N
p

. (This is consistent with earlier perturba-
tive arguments [10,11].) The purpose of this Letter is to
prove a similar statement for the case of large discrete
symmetry.
Black hole argument.—Consider a (scalar) field � of

mass M transforming under a discrete symmetry ZN ,

� � �eið2�=NÞk k ¼ 0; . . . ; N � 1: (2)

We assume that this ZN symmetry is exact; i.e., it is not
violated at any scale. A straightforward way to ensure this
is to declare that ZN is a gauge symmetry. However, for our
reasoning it is unimportant what underlying physics guar-
antees exactness of ZN . We then make the two following
assumptions: (a) the particle � has the largest charge to
mass ratio among all the particles carrying ZN charge, and
(b) there are no BH remnants.
We are going to prove that there is a bound on the cutoff

� of the low-energy theory,

� � M2
P=ðNMÞ: (3)

If M�MP=
ffiffiffiffi

N
p

this bound coincides with the bound

� � MP=
ffiffiffiffi

N
p

(4)

implied by naturalness. However, in general, the bound (3)
is weaker than (4). We show that the stronger bound (4) is
obtained if one makes an additional assumption that the
property of negative heat capacity of BHs persists in the
high-energy theory.
Let us proceed to the proof of Eq. (3). One performs the

same thought experiment [5] as in establishing the bound
(1). Take a macroscopic (arbitrarily large) BH and throw a
number�N of� particles into it. In this way we endow the
BH with ZN charge of order N. Then one waits for the BH
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in question to evaporate. Since the ZN symmetry is exact at
all scales and there are no remnants, the BH eventually has
to return the exact amount of the swallowed charge.
Indeed, if the returned charge were not equal to the original
one, the BH would mediate a process that violates ZN

explicitly, in contradiction with our assumption.
The crucial point is that as long as the BH is the usual

Schwartzschild BH it cannot give out any ZN charge.
Indeed, radiation of Schwartzschild BH is thermal and
contains as many � particles as the antiparticles. Thus, to
return back the ZN charge, the properties of BH must get
modified when it reaches a certain size, RBH ���1. This
implies the existence of a new physics at the scale �; in
other words, � is a cutoff of the low-energy theory.

Consider the BH that has just reached the cutoff scale.
The mass of the BH at this moment must be sufficient to
produce �N of � quanta,

MBH � NM: (5)

On the other hand, the BH mass and size are still related at
this moment by the standard Schwartzschild expression,

MBH � RBHM
2
P: (6)

Combining Eqs. (5) and (6) one obtains the bound (3).
Notice that the above proof is UV insensitive in the sense

that it does not depend on the precise nature of BHs that are
smaller than the cutoff scale ��1. All we have used is the
conservation of energy which is entirely a large-distance
constraint.

The bound can be improved if we make an additional
assumption that the property of negative heat capacity of
BHs persists in the high-energy theory. More precisely, we
assume that the BH, after it reaches the size RBH ���1

corresponding to the Hawking temperature TH ��, con-
tinues to radiate preferentially into modes with energies
equal or higher than�. Then, Eq. (5) is replaced byMBH �
N�. When combined with (6) it yields the stronger bound
(4).

The above assumption about the BH spectrum appears to
be natural. Its violation would imply very unusual proper-
ties of small BHs: they should be very cold and decay into
quanta with inverse momenta greatly exceeding the size of
the BH. Although we cannot exclude such a possibility, we
conclude that under reasonable assumptions about the
properties of small BHs the bound on the cutoff scale is (4).

It is worth comparing the argument presented in this
section with the case of large number of species [9]. In the
latter case the existence of the low cutoff can already be
established in perturbation theory by considering the gravi-
ton propagator. The loop corrections to the propagator are
amplified by the large number of species and the perturba-
tive expansion goes out of control precisely at the scale

MP=
ffiffiffiffi

N
p

signaling that the cutoff is reduced to this value.
The same conclusion can also be inferred directly from BH
physics. The Hawking radiation of a BH of size

ðMP=
ffiffiffiffi

N
p Þ�1 is drastically amplified as it can radiate N

species. As a consequence, such BH would have a lifetime
of order of its size and therefore it is not a classical object
as in ordinary general relativity. On the other hand, in the
case of a single field charged under a large discrete sym-
metry, the perturbation theory does not show any sign of
breaking down. Similarly, there is no indication of the

radiation of a BH of the size ðMP=
ffiffiffiffi

N
p Þ�1 blowing up.

Nevertheless as we have shown the consistency of the
theory requires the presence of a low cutoff. The argument
that enables one to establish the existence of the cutoff is
intrinsically nonperturbative and uses in an essential way
the BH physics. This is reminiscent of the ‘‘gravity as the
weakest force’’ conjecture [12]. It would be interesting to
explore a possible connection between this conjecture and
our work.
Explicit examples.—In this section we consider a few

examples of theories with large discrete symmetries.
(1) Consider a Uð1Þ gauge symmetry with two scalar

fields, � and �. The field � has a unit charge e while the
charge of the field � is Ne. Let the � field develop a
nonzero vacuum expectation value (VEV), thus breaking
the Uð1Þ symmetry down to ZN. The latter symmetry acts
on � according to Eq. (2). The field � is assumed to be
lighter than the other fields, so it is the only degree of
freedom at low energies.
It is important to notice that setting the ratio of charges

of the fields � and � to a rational number (which we, for
simplicity, took to be an integer) is not a fine-tuning.
Rather, this is required by the bound (1). Indeed, if the
ratio of charges were an irrational number, the effective
discrete symmetry would be Z1, which is impossible.
In this theory the ZN charge inside a given volume of

space can be monitored in the following way. Because of
the nontrivial topological structure of the vacuummanifold
(noncontractible loops) there are cosmic strings in this
theory, around which the phase of the � VEV winds by
2�multiple. These cosmic strings contain a unit flux of the
gauge field. This allows one to monitor the ZN charge of a
system through the Aharonov-Bohm effect in the scattering
of the cosmic strings from the system [6,7]. In particular, if
the system collapses into a BH, the latter has a quantum ZN

hair [6,7] that the Aharonov-Bohm effect can probe.
The black hole proof given above implies that gravity in

this model must be modified at distances ðMP=
ffiffiffiffi

N
p Þ�1.

Indeed, from the proof it is clear that BHs with the size

smaller than ðMP=
ffiffiffiffi

N
p Þ�1 have to acquire hair capable of

producing ZN-charge asymmetry in the BH evaporation.
On the other hand, such hair are impossible in Einstein’s
general relativity. At the classical level this follows from
the no-hair theorems [1]. Quantum effects do not help
either. Indeed, the existence of quantum hair leads to
polarization of vacuum around BHs with ZN charge [7].
This vacuum polarization is sensitive to the ZN charge of
the BH and, a priori, can contribute to the asymmetry of
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the evaporation. However, at weak coupling, Ne � 1, the
effect is exponentially suppressed [7] and is unable to
produce the necessary asymmetry. Thus we conclude that

the physics responsible for the cutoff at MP=
ffiffiffiffi

N
p

must
involve gravity in an essential way.

(2) The existence of a large discrete symmetry may be
accompanied by the presence of a large number of species
in the theory. Then, the latter property, by itself, implies a
low gravitational cutoff [9]. This point is illustrated by the
following example.

Consider an SUð2Þ gauge theory with two scalar fields,
�j and �j1j2;...;jN , transforming as a fundamental and

N-rank symmetric tensors, respectively. Here j ¼ 1; 2
and jk ¼ 1; 2 , k ¼ 1; . . . ; N are fundamental indices. We
assume that the field � acquires a VEV of only one com-
ponent �11;...;1. This VEV breaks the continuous SUð2Þ

symmetry down to a discrete ZN factor, under which�1 �
�1e

ið2�=NÞ and �2 � �2e
�ið2�=NÞ.

One may be tempted to apply our argument to show that
the gravitational cutoff in this theory is low using the field
�1 (or�2) in the proof. However, it would be incorrect: the
proof given in this Letter is not directly applicable to this
case. The reason is that the theory contains particles with
arbitrarily large ZN charges and so assumption (a) of the
proof is violated. The states with large ZN charges are the
components of the field �. Indeed, a component �j1j2;...;jN

with n indices equal to 1 and remaining N � n indices
equal to 2 carry 2n� N units of the ZN charge.
Correspondingly, a discrete charge of arbitrary 2n� N <
N number of the �1 fields can be recycled by a BH into a
single � quantum. The corresponding gauge invariant op-
erator has the form

�� j1 . . . ��j2n�j1;...;jna1;...;aN�n
�jnþ1;...;j2nb1;...;bN�n

�a1b1 . . . �aN�nbN�n : (7)

However, the gravitational cutoff is still lowered down to

MP=
ffiffiffiffi

N
p

in this model. This is due to the fact that the theory
contains N species which are the N components of the
symmetric tensor �. Thus we again find in this example

that large discrete symmetry implies cutoff MP=
ffiffiffiffi

N
p

,
though, in this case, indirectly, through a large number of
species.

(3) The bound (4) has been obtained without references
to the explicit structure of the theory of quantum gravity.
Hence, by consistency, it should be satisfied in the string
theory. Here we propose a simple example which shows
that this is indeed the case. Consider the setup where the
ZN group is generated by an isometry of compact space in
string theory compactification. We take the string coupling
to be of order one so that the 10-dimensional Planck mass
is set by the string scale MS. Consider now a compactifi-
cation on T6 �M4, where T6 is a 6-dimensional torus and
M4 is the 4-dimensional Minkowski space. The isometry
group of this space is Uð1Þ6. We wish now to break one of
the Uð1Þ’s down to ZN . Let the radius of the corresponding
circle be R. We assume the radii of the other tori to be of
order the string length. Then the relation between the 4-
dimensional Planck mass and the string scale is

M2
P ¼ M2

SðRMSÞ: (8)

Let us break the Uð1Þ isometry on the R circle down to ZN

by creating N fixed points around the circle. Alternatively
this can be done by placing N identical branes and requir-
ing the exact symmetry under cyclic shifts. Since the
distance between the fixed points or the branes is bounded
by the string scale, the maximal number of them that can be
fitted on the circle is N � RMS. Recalling that MS is the
cutoff of the low-energy effective theory, one sees that (8)
reproduces the bound (4).

Implication for the hierarchy problem.—The results of
this Letter shed new light on the proposal [5] to solve the
hierarchy problem by postulating a large discrete symme-
try with N � 1032. We find that in this case the gravita-
tional cutoff of the theory is not far from the weak scale;
thus, the latter is automatically stabilized. A generic pre-
diction of this solution to the hierarchy problem is the
appearance of strong gravitational physics not far from
the weak scale. From the experimental point of view this
physics is expected to manifest itself in softening of the

scattering amplitudes at energies above the scale MP=
ffiffiffiffi

N
p

.
We now briefly discuss some aspects of implementing the
above idea in model building.
From the constructive point of view it is desirable to

have an explicit mechanism ensuring the hierarchy be-
tween the Planck and the weak scales. In the standard
model (SM) the Higgs boson cannot transform under any
exact symmetry, so it is impossible to give the ZN charge to
the Higgs boson itself to apply the bound (1) directly to its
mass. Thus the idea is to ascribe the ZN charge to some
other fields whose mass gets contributions from the Higgs
VEV. The bound (1) on the mass of these particles then
implies the bound on the Higgs VEV.
Let us stress that in pursuing this strategy one should be

careful not to run into conflict with the low gravitational
cutoff. To illustrate what we mean, let us consider the
following example. One can identify large ZN with the
subgroups of the existing global symmetries of the SM
that would appear exact in the absence of gravity. Ignoring
gravity, the SM has two classically exact continuous global
symmetries that account for baryon and lepton number
conservations. Thus one possibility is to declare that the
ZN symmetry in question is a subgroup of some combina-
tion of baryon and lepton number symmetries. It is most
straightforward to embed ZN into the B� L symmetry
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because the latter is automatically anomaly free. Then,
from Eq. (1) the bound on N is M2

P=m
2
� * 1054 where

m� & eV is the mass of the lightest neutrino.
Postulating the ZN symmetry with N � 1054 we would
prevent the Higgs VEV from being larger than
10–100 TeV since large Higgs VEV would make neutrino
heavier [13] than the BH upper bound for N � 1054.
However, according to the results of this Letter, such a
large N would lower the gravitational cutoff below the
weak scale, in contradiction with the observations. If we
want the cutoff at an acceptable level, we have to chose
N � 1032. In this case the direct BH bound on the Higgs
VEV is much higher than the bound on the cutoff.

The reader may question why one should worry about
applying the BH bound (1) directly to the Higgs VEV,
given the fact that in the above example with N � 1032

the cutoff is at the needed level. Seemingly, the latter
would suffice to solve the hierarchy problem. The point
is that, in general, the cutoff controls the radiative stability
of the weak scale but need not necessarily constrain its
tree-level value. Correspondingly, if the tree-level value is
large, the physical scale will also be large even though the
radiative corrections are small. Hence, the small cutoff
does not necessarily guarantee the smallness of the physi-
cally observable weak scale, whereas the direct BH bound
on the mass (1) does.

To make our reasoning more transparent, it is useful to
make a parallel with a much more familiar example of the
low-energy supersymmetry. The cutoff that controls the
radiative corrections to the Higgs boson mass is the super-
symmetry breaking scale in the observable sector, msusy �
TeV. However, smallness of this cutoff cannot explain why
there is no large tree-level contribution to the Higgs boson
mass. The latter puzzle is the essence of the celebrated �
problem. Thus, in order to solve the hierarchy problem in
supersymmetry, smallness of msusy is not enough. One

needs an additional mechanism that would guarantee
smallness of �. In our case the analog of msusy is the low

gravity cutoff MP=
ffiffiffiffi

N
p

. However, the physical weak scale
is restricted by the BH bound on the particle masses.
Whenever we can directly apply this bound to the weak
scale, the hierarchy problem is solved, with no need of any
further assumptions about the tree-level masses versus
cutoff.

An example when there is no large discrepancy between
the cutoff and the direct BH bound on the Higgs VEV is
obtained in the following way. One introduces a scalar S
transforming under ZN symmetry and having no charge
under the SM gauge group. This scalar gets a mass from the
Higgs VEV through the following coupling in the
Lagrangian, ��H�HS�S�M2S�S, where �� 1 is the
coupling constant and M2 is the bare mass. Equation (1)
yields a bound on the total mass of S,

�H�H þM2 & M2
P=N;

which for � > 0, M2 > 0 translates into the bound on the

Higgs VEV hHi & MP=
ffiffiffiffi

N
p

. The latter is of the same order
as the bound on the cutoff.
To avoid confusion, let us stress that the solution of the

hierarchy problem considered above, based on the exis-
tence of a discrete symmetry ZN with largeN, is physically
different from the explanation of the hierarchy considered
in Refs. [9,14] where the large number N was the number
of particle species. In particular, the arguments presented
in [14] to show that the many-species scenario can simul-
taneously solve the strong CP problem are not directly
applicable to the case of large discrete symmetry. It would
be interesting to understand whether an alternative argu-
ment exists that could explain the smallness of the strong
CP parameter in the large ZN case as well.
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