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We study Coleman–De Luccia tunneling of the Standard Model Higgs field during inflation in the 
case when the electroweak vacuum is metastable. We verify that the tunneling rate is exponentially 
suppressed. The main contribution to the suppression is the same as in flat space–time. We analytically 
estimate the corrections due to the expansion of the universe and an effective mass term in the Higgs 
potential that can be present at inflation.
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1. Introduction

At tree level the Standard Model (SM) Higgs potential has an 
absolute minimum corresponding to the electroweak (EW) vac-
uum. The loop corrections change the picture drastically. They 
modify the effective potential for the Higgs field through the renor-
malization group (RG) running of the Higgs quartic coupling λ

[1,2]. The precise evolution of λ strongly depends on the values of 
the Higgs and top-quark masses. It is still possible, within uncer-
tainties of the top mass, that λ stays positive all the way up to the 
Planck scale [3]. However, for the current best-fit values of the SM 
parameters, λ changes sign at large RG scale μ0 ∼ 1010 GeV and 
reaches a negative minimum at μ∗ ∼ 1016–1018 GeV, see Fig. 1. 
It is worth stressing that this RG evolution is obtained under the 
assumption of no new physics interfering with the running of λ. 
As a result, the effective Higgs potential1

Vh = λ(h)h4

4
(1)

goes much below the EW vacuum at large values of the field, 
as shown schematically in Fig. 2. This makes the EW vacuum 
metastable.

While in a low density, low temperature environment charac-
teristic of the present-day universe the SM vacuum is safely long-
lived [2], the situation may be different during primordial inflation. 
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pearing below.
http://dx.doi.org/10.1016/j.physletb.2015.05.012
0370-2693/© 2015 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
Fig. 1. Running of the Higgs quartic coupling in the Standard Model at NNLO in 
the MS scheme. The RG equations are solved using the code available at [4] based 
on [5,1]. Blue solid line corresponds to the best-fit values of the Standard Model 
parameters [6]. Blue dashed lines correspond to 2σ experimental uncertainty in the 
measurement of the top-quark mass [7] and red dotted lines — to the theoretical 
uncertainty discussed in [3]. The plot is restricted to the scales smaller than the 
Planck mass Mp = 1.22 · 1019 GeV.

Indeed, most inflationary models predict the Hubble expansion 
rate during inflation Hinf to be much higher than the measured 
Higgs mass. Thus, if the Higgs does not have any other couplings 
besides those present in SM, it behaves at inflation as an essen-
tially massless field and develops fluctuations of order Hinf . Denote 
by hmax the value of h corresponding to the top of the barrier sep-
arating the EW vacuum from the run-away region. Then, even if 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 2. Schematic form of the effective Higgs potential (not to scale).

h is originally placed close to the origin, it will roll beyond the 
barrier with order-one probability for Hinf > hmax [8–13].

A simple cure to the problem is to endow the Higgs with an 
effective mass meff � Hinf during the inflationary stage. This can 
be due, for example, to a non-minimal coupling to gravity,2 VhR =
ξ Rh2/2 [8,14], or a coupling between h and the inflaton field3 φ

of the form Vhφ = f (φ)h2/2 [9,11]. This raises the potential barrier 
and suppresses the over-barrier transitions. In this situation the 
EW vacuum is still able to decay via quantum tunneling.

Tunneling from a false vacuum in (quasi-) de Sitter space–time 
can proceed in two distinct regimes: via the Hawking–Moss (HM) 
instanton [16] which describes quantum jumps on top of the po-
tential barrier, or via Coleman–De Luccia (CDL) bounce [17] corre-
sponding to genuinely under-barrier penetration. While HM transi-
tions have been extensively discussed in connection with the Higgs 
behavior during inflation (see e.g. [8,10,12,13]), the CDL tunneling 
is usually discarded with the common lore that it is sufficiently 
suppressed. However, to the best of our knowledge, a verification 
of this assertion is missing in the literature.4 Moreover, Ref. [10]
which explicitly addressed this question has reported an opposite 
result that the CDL decay of the EW vacuum is enhanced, instead 
of being exponentially suppressed. If true, this would pose a seri-
ous challenge for the stability of the EW vacuum during inflation.

The purpose of this letter is to clarify the above issue. We will 
estimate the CDL tunneling rate and confirm that it is exponen-
tially suppressed. The suppression exponent will be found to be 
essentially the same as in flat space–time, up to small corrections 
which we will estimate analytically.

2. Bounces in de Sitter space

In this section we assume that the energy density of the uni-
verse is dominated by the inflaton with negligible back-reaction of 
the Higgs field on the metric. The validity of this assumption will 
be discussed later. Then, neglecting the slow-roll corrections, we 
arrive to the problem of a false vacuum decay in external de Sit-
ter space–time. This process is described by the Euclidean version 
of the Higgs action

S E =
∫

d4x
√

gE

(
1

2
gμν

E ∂μh∂νh + Vh(h)

)
, (2)

where gE μν is the metric of a 4-dimensional sphere, which is the 
analytic continuation of the de Sitter metric [17] (see also [18]),

2 We work in the signature (−, +, +, +), so that the curvature of de Sitter space 
is positive, R = 12H2

inf .
3 We assume that the inflaton is distinct from the Higgs, unlike the case of Higgs 

inflation [15].
4 Note that the thin-wall approximation, which is often invoked in the analysis 

of the CDL tunneling and which makes the exponential suppression manifest, is not 
applicable in the case of the Higgs field.
ds2
E = dχ2 + ρ2(χ)d
2

3 , ρ = 1

Hinf
sin(Hinf χ) ,

0 ≤ χ ≤ π

Hinf
. (3)

Here d
3 is the line element on a unit 3-sphere. We search for 
a smooth solution of the Higgs equations of motion following 
from (2). Assuming O (4) symmetry, one reduces the action to

S E = 2π2

π/Hinf∫
0

dχ ρ3
(

h′ 2

2
+ Vh

)
, (4)

which yields the equation for the bounce hb(χ),

h′′
b + 3Hinf ctg(Hinf χ)h′

b = dVh

dh
. (5a)

To be regular, the solution must obey the boundary conditions,

h′
b(0) = h′

b(π/Hinf ) = 0 . (5b)

The probability of false vacuum decay per unit time per unit vol-
ume scales as

dP

dtdV
∝ exp(−S E) , (6)

where the action is evaluated on the solution hb(χ).

Hawking–Moss instanton. Eqs. (5) always have a constant solu-
tion with the Higgs field sitting on top of the potential barrier, 
hb = hmax (see Fig. 2). This instanton can be interpreted as describ-
ing the over-barrier jumps of the Higgs field due to non-zero de 
Sitter temperature, TdS = Hinf /(2π) [19]. The rate of such transi-
tions is given by (6) with the action

S(HM)
E = 8π2

3

V max

H4
inf

. (7)

The transition rate is exponentially suppressed if Hinf � V 1/4
max . In 

the pure SM V 1/4
max is of order 109 GeV [2] implying that the 

EW vacuum is stable with respect to HM transitions whenever 
Hinf < 109 GeV and unstable otherwise. In the latter case new con-
tributions into the Higgs potential that raise V max are required to 
stabilize the SM vacuum. A simple option is to endow h with an 
effective mass meff during inflation. The potential becomes

Vh = λ(h)h4

4
+ m2

eff h2

2
. (8)

For Hinf � 1010 GeV the qualitative picture is captured by neglect-
ing the slow logarithmic dependence of the coupling on the field 
and normalizing it at a fixed scale above μ0, so that λ is nega-
tive and is of order 0.01 in the absolute value. This gives for the 
position and height of the potential barrier,

hmax = meff√|λ| , V max = m4
eff

4|λ| (9)

leading to the instanton action,

S(HM)
E = 8π2

3|λ|
(

meff

Hinf

)4

. (10)

As expected, the transitions are strongly suppressed provided the 
mass is bigger than |λ|1/4 Hinf . Note that for these values of the 
mass hmax lies above μ0, which justifies our approximation of con-
stant negative λ. For the case when the Higgs mass is due to 
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non-minimal coupling to gravity one has m2
eff = 12ξ H2

inf , so that 
the suppression (10) does not depend on the Hubble parameter 
and is large already for ξ � 0.1 [8,14,20].

Coleman–De Luccia bounce. Another decay channel is described 
by inhomogeneous solutions of (5) which interpolate between the 
false vacuum and a value h∗ in the run-away region. These cor-
respond to genuinely under-barrier tunneling. To understand their 
properties, let us first neglect the running of λ normalizing it at 
a high enough scale, so that λ < 0. If we further neglect the mass 
and space–time curvature, we obtain the setup of tunneling from 
the top of an inverted quartic potential in flat space. This is de-
scribed by a family of bounces,

hχ̄ (χ) =
√

8

|λ|
χ̄

χ2 + χ̄2
, (11)

parameterized by their size χ̄ . The action of these solutions is in-
dependent of χ̄ due to the classical scale invariance of the setup,

S E = 8π2

3|λ| . (12)

The mass and finite Hubble rate break the degeneracy. Assuming 
that the size of the instanton is small compared to the length

l = min(m−1
eff , H−1

inf ) (13)

characterizing the breaking of scale invariance, one can estimate 
the corrections to the bounce action perturbatively. Substituting 
(11) into (4) and expanding to the order O ((l/χ̄)2) we obtain,

S(CDL)
E (χ̄ ) = 8π2

3|λ|
[
1 + 3(m2

eff − 2H2
inf )χ̄

2 log(l/χ̄)
]

, (14)

where we have kept only the log-enhanced contributions. The tun-
neling rate is given by the configuration minimizing the action. 
If m2

eff > 2H2
inf the minimal suppression is reached at the con-

figuration of zero size,5 χ̄ = 0, and coincides with the flat-space 
result (12). One observes that in this case the assumption χ̄ � l is 
justified. In the opposite case, m2

eff < 2H2
inf , the correction due to 

the expansion of the universe dominates and makes the solution 
spread over the whole 4-sphere. We have checked numerically that 
the only solution in this case is the HM instanton.

We now restore the running of couplings which provides addi-
tional source of the scale invariance breaking. This enters into the 
calculations through the loop corrections in the instanton back-
ground. For instantons of the size smaller than l these corrections 
can be evaluated neglecting both the mass meff and the Hub-
ble Hinf . Thus, they are the same as in the flat space [22] and 
roughly amount to substituting in (14) the coupling constant eval-
uated at the scale of inverse instanton size, μ = χ̄−1. Numerically, 
for the best-fit values of the SM parameters, this dependence on 
χ̄ turns out to be much stronger than the one introduced by the 
effective mass and the Hubble expansion. This freezes the size of 
the instanton at the value corresponding to the minimum of the 
running coupling constant, χ̄−1∗ ≈ μ∗ ∼ 1016–1018 GeV. The to-
tal answer for the suppression is then given by (14) evaluated 
at χ̄∗ . The corrections due to meff and Hinf are small as long as6

meff , Hinf � 1015–1017 GeV.

5 A proper interpretation of this singular bounce is given within the formalism of 
constrained instantons [21].

6 The current bound on the primordial tensor perturbations [23] constrains 
Hinf � 1014 GeV during last ∼ 60 efolds of inflation.
3. Discussion of approximations

We have obtained the formula (14) under the assumption that 
the transition happens in an external de Sitter space–time. Let us 
check its validity. First, the Hubble rate during inflation is not ex-
actly constant, but slowly varies. We have seen that the size of the 
bounce is much smaller that the horizon size. This implies that the 
formation of the bubble of the new phase inside the false vacuum 
occurs very fast.7 Thus neglecting the change in the Hubble rate 
during the formation of the bubble is justified.

Second, in the case when the effective Higgs mass is given by 
the coupling to the inflaton, the Higgs exerts a force on the inflaton 
during tunneling. This force should not lead to large displacements 
of φ that could change its energy density. One estimates the shift 
of φ due to the Higgs force as

�δφ = h2

2

dm2
eff

dφ

⇒ δφ ∼ h2∗

H2

dm2
eff

dφ
, (15)

where box stands for the Laplacian on the 4-sphere and h∗ =√
8/|λ(χ̄−1∗ )| χ̄−1∗ is the value of the Higgs in the center of the 

instanton. Requiring V ′
inf δφ � V inf we obtain the condition

dm2
eff

dφ
� V ′

inf

6εh2∗
, (16)

where ε = (Mp V ′
inf )

2/(16π V 2
inf ) is the slow-roll parameter. This 

condition is satisfied if the dependence of meff on the inflaton is 
weak enough.

Last, but not least, one should check if the energy density of 
the Higgs field is smaller than that of the inflaton. This require-
ment turns out to be violated in the center of the CDL bounce for 
realistic values of Hinf . What saves the day is the fact that the size 
of the region where this violation occurs is of order χ̄∗ . On the 
other hand, the log-enhanced corrections in (14) come from the 
region of order ∼ l, which is much larger. Thus they are not modi-
fied by the back-reaction of the Higgs field on the geometry.

The effects of the back-reaction can be taken into account ne-
glecting completely the inflaton energy density, i.e. in the same 
way as in the case of the false vacuum decay in the flat space [24]. 
They give an additional contribution to the bounce action,8

�S(CDL)
E = 256π3(1 − 12ξ)

45(Mpχ̄λ)2
. (17)

For moderate values of ξ these corrections are small as long as 
χ̄−1∗ < 5 · 1016 GeV. Finally, further corrections to the bounce ac-
tion can come from Planck-suppressed higher-order operators in 
the Higgs action. The analysis of these corrections is the same as 
in flat space–time. Note that they can be quite significant due to 
the fact that the size of the instanton is close to Planckian [25].
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