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aFSB/ITP/LPPC, École Polytechnique Fédérale de Lausanne,

CH-1015, Lausanne, Switzerland
bCERN, Theory Division,

CH-1211 Geneva 23, Switzerland
cDepartament de F́ısica and IFAE, Universitat Autònoma de Barcelona,
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1 Introduction

Recently P. Hořava argued that it may be possible to construct a consistent renormalizable

theory of quantum gravity within the framework of perturbative quantum field theory

(QFT) [1] (see also [2]). The proposal exploits the improved ultraviolet (UV) behavior of

non-relativistic QFTs possessing an UV fixed point with anisotropic scaling of space and

time. In this type of theories the UV behavior of the field propagators is improved thanks

to terms with higher spatial derivatives. At the same time the number of time derivatives

in the Lagrangian remains equal to two allowing to bypass the problems with ghosts arising

in Lorentz invariant higher-derivative theories of gravity [3]. Evidently, by breaking the
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symmetry between space and time one sacrifices Lorentz invariance. The latter is no

longer a fundamental property of the theory and may only emerge at low energies as an

approximate symmetry. For matter fields in flat space this does not pose an immediate

problem, other than the stringent observational constraint that Lorentz invariance needs to

emerge to an extremely high accuracy, see [4–10] and references therein for the discussion

of experimental bounds on Lorentz violating extensions of the Standard Model.

However, abandoning relativistic invariance has dramatic effects for gravity. The rea-

son is that in general relativity (GR) Lorentz symmetry is gauged. The gauge symmetry is

crucial to remove the unphysical degrees of freedom contained in the metric, leaving only

two massless helicity-2 modes for the graviton. Thus one expects that abandoning Lorentz

invariance will lead to the reduction of the local gauge group and to the appearance of new

degrees of freedom (for theories with the same field content as GR). As already pointed

out in [1] this is indeed the case: in addition to the helicity-2 modes the Hořava model

propagates a helicity-0 excitation.1 The physical meaning of the new mode can be under-

stood as follows. From the geometrical point of view the introduction of the preferred time

coordinate amounts to equipping the space-time manifold with a foliation by space-like

surfaces. In the gravitational theory the foliation inevitably becomes dynamical together

with the geometry of the manifold. The helicity-0 mode is nothing but the excitation of

this foliation structure. In this sense, the extra mode describes fluctuations of the global

time, so we coin for it the name ‘khronon’.2

Importantly, the new mode does not have a mass gap and thus cannot be consistently

decoupled at low energies [12, 13]. This implies that the theory cannot flow to GR in the

infrared. Instead, one may entertain the possibility that at low energies the theory reduces

to a (Lorentz-violating) model of modified gravity, with the modifications being small

enough not to contradict the experimental data. The studies of modified gravity models,

both in Lorentz-invariant [15–18] and Lorentz-violating [19–21] contexts, have shown that

the properties of the extra degrees of freedom can make them fail as phenomenologically

acceptable effective field theories (EFT). This is precisely what happens in the original

realization [1] of Hořava’s proposal where the behavior of the khronon turns out to be

problematic [13, 22, 23] (see also [24, 25] for the discussion of pathologies in a restricted

version of the model).

It is worth clarifying whether these problems are completely generic and invalidate the

approach to quantum gravity proposed in [1], or they represent merely a failure of a specific

realization of the general framework. The purpose of the present paper is to address this

question.

To this end we consider three different models of non-relativistic gravity. First we

will reexamine the ‘projectable’ version of the original proposal [1] outlining its problems

associated with the scalar sector. Then we will consider the two extensions of the original

1The helicity-0 mode is absent in a special case when the model obeys anisotropic Weyl invariance. How-

ever, this symmetry is not compatible with observations. For another proposal to eliminate the helicity-0

mode see [11].
2From Greek χρoνoς — time. This should not be confused with the term ‘chronon’ appearing in the

sense of “fundamental interval of time” in some theories [14].
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proposal suggested in [13] to remedy these problems. The first one is based on a smaller

symmetry group and can be viewed as a (power-counting) renormalizable version of ghost

condensation [19].

The second extension is the one presented in [26]. A preliminary study of this extension

was reported in [26, 27]. Here we analyze it in more detail and confirm that the model is

compatible with phenomenological constraints for suitable choices of parameters.

All the models we will consider contain flat space-time as a consistent background and

are naively power-counting renormalizable. However, the behavior of the extra mode(s)

is drastically different in the three cases, the differences stemming from the symmetries

or other details of the particular realization. Hence, before going to our analysis let us

spend a few words concerning the main features of the different possible implementations

of non-relativistic quantum gravity. One can distinguish the following:

• The choice of the anisotropic scaling to implement power-counting renormalizability.

Namely, one postulates the scaling transformations

x 7→ b−1x , t 7→ b−zt , (1.1)

with a given critical exponent z, together with the scaling weights of the different

fields. Then one classifies the operators in the theory according to their dimensions

with respect to this scaling. The theory is (power-counting) renormalizable if the ac-

tion contains only a finite number of terms of zero (marginal operators) and negative

(relevant operators) scaling dimensions.3 The case of a relativistic QFT corresponds

to z = 1. In this paper we stick to the choice z = 3. As discussed in [1], this is

the minimal value of z that allows to construct a power-counting renormalizable La-

grangian for gravity in (3 + 1) dimensions. Larger values of z are also possible and

lead to super-renormalizable models.

• The subgroup of the four-dimensional diffeomorphisms (Diff) under which the theory

is invariant. The distinction between space and time enforces a preferred time coor-

dinate. As stated above, this corresponds to endowing the space-time manifold with

an additional structure: a preferred foliation by space-like surfaces. In particular this

means that the arbitrary reparameterizations of time t 7→ t̃(t,x) are not an invariance

of the theory. Instead, the following unbroken symmetries have been considered in

the literature:

(i) x 7→ x̃(t,x) and t 7→ t̃(t) . (1.2)

We will refer to these transformations as ‘foliation-preserving Diffs’, or FDiffs for

short. This is the largest possible unbroken gauge group. It is the one originally

considered in [1].

(ii) x 7→ x̃(t,x) and t 7→ t̃ = t+ const. (1.3)

We shall refer to this as the ‘restricted-foliation-preserving Diffs’ (RFDiffs). This

symmetry arises in a number of effective field theories of modified gravity, such as

3The dimension of the spatial coordinates xi is taken to be −1.
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the shift-symmetric k-essence [28] or the ghost condensation [19]. The invariance

under time translations implies existence of a conserved energy.4

(iii) x 7→ x̃(t,x) .

This is the unbroken group in potential-driven inflation and in non-shift-sym-

metric k-inflation around time-dependent spatially homogeneous solutions. It

serves as the basis of the effective field theory of inflation [29, 30]. The action in

this case contains explicit time dependence and there is no energy conservation.

(iv) x 7→ x̃(x) and t 7→ t̃ = t+ const.

This reduction of symmetry is likely to give rise to propagating helicity-1 degrees

of freedom (in addition to the helicity-2 and helicity-0 modes). This is similar

to the situation in Einstein-aether theory [31] (see [32] for recent review) and

gauged ghost condensation [33].

(v) x 7→ x̃ = x+ ξ(t) and t 7→ t̃ = t+ const.

Here ξ(t) is and arbitrary time-dependent three-vector. This is the symmetry

group of Lorentz violating massive gravity [20, 34].

In principle it may be possible to construct power-counting renormalizable theories of

gravity with any of the above unbroken symmetries. A natural expectation is that the

larger the unbroken gauge group, the more constrained the model is, and the fewer

degrees of freedom it contains. Investigating all the possibilities is beyond the scope

of this article. We shall limit the analysis to the FDiff-invariant and RFDiff-invariant

theories. In these cases there are only extra scalar modes, but their number grows

when relaxing the symmetry. We will see that the covariant form of these theories

involves only a single scalar field (a khronon) in addition to the metric.5 It seems

therefore appropriate to refer to these as “khrono-metric” theories.

• Finally, one may impose additional restrictions on the action that do not follow from

a symmetry. Examples of such restrictions are the ‘projectability’ and the ‘detailed

balance’ conditions of the original paper [1]. In the present work we do not impose

the detailed balance condition, and we consider models both with and without the

projectability property.

The paper is organized as follows. In section 2 we introduce the basic notations and

tools for our analysis. In section 3 we consider the ‘projectable’ version of the original

Hořava model and discuss problems associated with the extra scalar mode. In section 4 we

elaborate on an attempt to fix these problems by relaxing the symmetry from FDiffs down

to RFDiffs. We show that the model obtained in this way does not provide a consistent

candidate for quantum gravity. The relation between this model and the ghost conden-

sation [19] is discussed. In section 5 we return to the case of full FDiff-invariance, now

4Note that there is certain freedom in interpreting the time-translation invariance at the quantum level

as either global or gauge symmetry. In the latter case energy must vanish on the physical states.
5The equation of motion for the khronon field turns out to be of different order in time-derivatives

depending on the symmetry. Hence the different number of propagating modes in the FDiff- and RFDiff-

invariant cases.
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without the projectability condition. In this case the original action of Hořava’s model must

be supplemented by additional terms [26] allowed by the symmetry and power-counting

renormalizability. In section 5.1 we demonstrate that these terms make the scalar gravi-

ton stable and weakly coupled. In the rest of section 5 we analyze the phenomenological

bounds on this healthy model. In doing this we exploit the analogy [27, 35] between the

low-energy limit of the model and the Einstein-aether theory [31, 32]. In section 6 we sum-

marize our results and discuss future directions. Some details of the analysis are deferred

to the appendices.

Readers interested in the phenomenology of the healthy model may skip sections 3, 4

and go directly from section 2 to section 5.

2 General setup

2.1 Three theories under scrutiny

In this section we introduce the basic ingredients of the Hořava-type theories that we are

going to consider. The field content includes the spatial metric γij , the shift Ni and the

lapse N entering into the (3+1) (ADM) decomposition of the 4-dimensional metric,

ds2 = (N2 −NiN
i)dt2 − 2Nidx

idt− γijdx
idxj .

These fields transform in the standard way under the 4-dimensional coordinate transfor-

mations.

Model I: Hořava’s projectable FDiff gravity. We first consider the FDiff-invariant

case. Let us also impose the additional requirement that the lapse is ‘projectable’, i.e. that

it does not depend on space coordinates,

N = N(t) . (2.1)

Note that this restriction is compatible with the transformation rules for the lapse under

FDiffs,

N 7→ Ñ = N
∂t

∂t̃
.

One writes down the following action with two time derivatives [1],

SI =
M2

0

2

∫

d3x dt
√
γ N

(

KijK
ij − λK2 − VI

)

. (2.2)

HereM0 is a coupling constant that will be related to the Planck mass; λ is a dimensionless

constant; Kij is the extrinsic curvature tensor for the surfaces of constant time,6

Kij =
1

2N
(γ̇ij −∇iNj −∇jNi) , (2.3)

6Throughout the paper we use lower-case Latin letters i, j, . . . for 3-dimensional indices. They are

raised and lowered using the spatial metrics γij , γ
ij . The covariant derivatives carrying these indices are

understood accordingly.
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K is its trace, K ≡ Kijγ
ij ; and the ‘potential’ VI depends on the spatial metric γij via the

3-dimensional Ricci tensor Rij and its spatial covariant derivatives.7 One notices that the

first two terms in (2.2), which comprise the kinetic part of the action, are invariant under

the scaling (1.1) with z = 3 provided γij , Ni and N scale as

γij 7→ γij , Ni 7→ b2Ni , N 7→ N .

In other words, the kinetic terms are marginal with respect to the anisotropic scaling with

z = 3. A power-counting renormalizable theory is obtained by including in the action all

possible marginal and relevant terms. This corresponds to considering the most general

potential VI containing local operators with the scaling dimensions up to 6. There is a

finite number of these terms, whose classification was performed in [12]. For our purposes

it suffices to write schematically,

VI = −ξR+M−2
∗ (A1R

2 +A2RijR
ij + . . .)

+M−4
∗ (B1R∆R+B2RijR

jkRi
k + . . .) ,

(2.4)

where ξ, An, Bn are dimensionless coupling constants and dots stand for all possible in-

equivalent operators of the given dimension. Note that we have introduced here the mass

M∗ for the scale suppressing higher-order operators; this scale may or may not coincide

with M0. In what follows we set the parameter ξ to 1 which can always be achieved by a

constant rescaling of the time coordinate. In the absence of matter this does not affect the

physical content of the model. We will return to the general case ξ 6= 1 in section 5.4.

Omitting higher-derivative terms in the potential and setting λ = 1 one formally

recovers the action of GR [1].8 However, as we discuss below, the limit λ→ 1, An, Bn → 0

is discontinuous: the model (2.2), (2.4) contains more degrees of freedom than GR and

does not possess a stable Minkowski vacuum. This model will be analyzed in section 3.

Model II: non-projectable FDiff gravity. Let us now relax the projectability condi-

tion (2.1), so that the lapse N is allowed to depend both on time and space. In this case,

the object

ai ≡ N−1∂iN ,

transforms covariantly under FDiffs and has scaling dimension 1. To obtain a (power-

counting) renormalizable theory one should allow the potential to depend on ai. Again,

this dependence must be limited to local operators of dimension up to 6. Note that ai can

be consistently excluded from the kinetic part of the Lagrangian. Indeed, recall that each

time derivative raises the dimension of an operator by 3. Thus operators of dimensions less

or equal 6 can contain together with ai at most one time derivative. It is straightforward to

check that, up to integration by parts in the action, there are three possible combinations

(all having dimension 5):

Kijaiaj , Kij∇iaj , K∇ia
i .

7Recall that in three dimensions the Riemann tensor is completely determined in terms of the Ricci

tensor.
8Still, the resulting theory is different from GR because of the projectability restriction (2.1).
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These operators are odd under T and CPT transformations. While in general it might be

interesting to study the effect of such operators, in the present paper we forbid them by

assuming the CPT invariance. Thus we arrive to the following action

SII =
M2

0

2

∫

d3x dt
√
γ N

(

KijK
ij − λK2 − VII

)

, (2.5)

where

VII = VI − αaia
i +M−2

∗ (C1ai∆a
i + C2(aia

i)2 + C3aiajR
ij + . . .) (2.6)

+M−4
∗ (D1ai∆

2ai +D2(aia
i)3 +D3aia

iajakR
jk + . . .) .

Note that due to the positive scaling dimension of ai the potential again contains only

finite number of terms. The projectable model can be recovered from (2.6) by taking the

limit α → ∞ which enforces the spatial gradient of the lapse to vanish, ∂iN = 0. The

potential (2.6) was first proposed in [26]. The model with the action (2.5), (2.6) will be

studied in section 5.

Model III: RFDiff gravity. The third model we are going to consider corresponds to

relaxing the symmetry from FDiffs to RFDiffs. This has a dramatic effect on the possible

structure of interactions in the theory. The reason is that the lapse N is now a scalar

under the symmetry group.9 At the same time its scaling dimension is 0. Therefore, all

dimensionless couplings in the Lagrangian may acquire arbitrary dependence on it without

spoiling the power-counting renormalizability. Besides, the reduced symmetry allows and

power-counting renormalizability requires to include into the action a kinetic term for N .

Thus the most general action reads,

SIII =
M2

0

2

∫

d3x dt
√
γ N

(

λ1(N)(Ṅ−N i∂iN)2+λ2(N)KijK
ij−λ(N)K2−VIII

)

(2.7)

with

VIII = V (N)− ξ(N)R− α(N) aia
i (2.8)

+M−2
∗

(

A1(N)R2 +A2(N)RijR
ij + C1(N)ai∆a

i + C2(N)(aia
i)2 + . . .

)

+M−4
∗

(

B1(N)R∆R+B2(N)RijR
jkRj

k +D1(N)ai∆
2ai +D2(N)(aia

i)3 + . . .
)

.

Note that the form of the kinetic term for N is fixed by the invariance under RFDiffs (1.3).

Besides, relaxing the symmetry down to RFDiffs allows to include the standard potential

terms V (N) for the lapse. The presence of arbitrary functions of N in the Lagrangian

makes this theory perhaps less attractive, since it involves an infinite number of coupling

constants and thus leads to the loss of predictive power (unless these coupling constants are

9Note that the reduced gauge invariance is compatible with restricting the lapse N to a fixed value, say

N = 1. Then N drops out of the action. The only difference of the resulting theory from the projectable

model is the absence of the integral Hamiltonian constraint, so locally the two theories are equivalent (cf.

the discussion in the beginning of section 3.2). Thus all results about local dynamics of the projectable

model apply to this case.
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constrained by an additional dynamical principle). In spite of this, we find it instructive

to explore what happens in this type of extension. We study this model in section 4.

Let us end this section by introducing a few notations that will be common in the

analysis of all the above models. We are going to study the dynamics of small metric

perturbations in these models above flat background. Since the most worrisome modes are

the helicity-0 excitations we concentrate on scalar perturbations of the metric which we

parameterize as follows:

N = 1 + φ , (2.9a)

Ni =
∂i√
∆
B , (2.9b)

γij = δij − 2

(

δij −
∂i∂j
∆

)

ψ − 2
∂i∂j
∆

E , (2.9c)

where ∆ is the spatial Laplacian. Finally, the following mass scales will appear in the

analysis:

M2
λ ≡ (λ− 1)M2

0 , M2
α ≡ αM2

0 , M2
λ1

≡ λ1M
2
0 . (2.10)

2.2 Stückelberg formalism and the khronon field

In our study we will make extensive use of the Stückelberg formalism. This formalism

allows to single out explicitly the extra degrees of freedom appearing in the non-relativistic

models with respect to the Diff-invariant theory and study their dynamics in a transparent

way. In the present context, it amounts to rewriting the action of the theory in a generally

covariant form at the expense of introducing a compensator field which transforms non-

homogeneously under the broken part of the 4-dimensional Diffs. It is worth stressing that

this procedure does not introduce new local degrees of freedom into the theory, but just

makes explicit those already present (this is clear from the identity of the equations of mo-

tion achieved in a particular gauge, see below).10 See [16, 20, 34] for previous applications

of the Stückelberg formalism in modified gravity theories.

In the present paper we follow the approach of [13]. One encodes the foliation structure

in a scalar field ϕ(x). Namely, the foliation surfaces are identified with the surfaces of

constant ϕ,

ϕ = const . (2.11)

Clearly, to define a regular foliation the field ϕ must possess non-zero time-like gradient.

In this sense ϕ defines an absolute time, hence we call this field ‘khronon’. This identifica-

tion allows a covariant definition of the foliation structure. The actions (2.2), (2.5), (2.7)

correspond to the frame where the coordinate time coincides with ϕ,

ϕ = t . (2.12)

10There may be differences between the Stückelberg and original non-relativistic pictures at the non-

perturbative level due to subtleties in the definition of the corresponding path integrals. However, these

subtleties do not affect the perturbative analysis presented in this paper.
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We will refer to this choice of coordinates as the ‘unitary gauge’ and restrict our study to

the field configurations where it can be achieved.

The action for ϕ in a generic frame is obtained by realizing that the objects appearing

in (2.2), (2.5), (2.7) are the standard geometrical quantities that characterize the embedding

of the hypersurfaces (2.11) into space-time. The central role in the construction of these

quantities is played by the unit normal vector11

uµ ≡ ∂µϕ√
X
, (2.13)

where

X ≡ gµν ∂µϕ∂νϕ . (2.14)

Note that uµ is invariant under the reparameterizations of ϕ,

ϕ 7→ ϕ̃ = f(ϕ) , (2.15)

where f is an arbitrary monotonic function. This reflects the invariance of the foliation

structure under reparameterizations of ϕ. The time-dependent VEV of the khronon field

ϕ breaks the product of the reparameterizations (2.15) and general covariance down to the

diagonal subgroup which in the unitary gauge coincides with the FDiffs (1.2). One con-

cludes that the covariant form of a FDiff-symmetric theory must be invariant under (2.15).

On the other hand, in the case of RFDiffs the symmetry of the khronon action is reduced

to the shift symmetry

ϕ 7→ ϕ̃ = ϕ+ const , (2.16)

allowing general dependence of the action on the derivatives of ϕ.

Other geometrical quantities associated to the foliation are constructed out of uµ and

its derivatives. We have the following expressions for the spatial projector:

Pµν ≡ gµν − uµuν ,

the extrinsic curvature:

Kµν ≡ Pρµ∇ρuν =
1√
X
P ρ
µP

σ
ν ∇ρ∇σϕ , (2.17)

the acceleration of the congruence of curves normal to the foliation:

aµ ≡ uν∇νuµ (2.18)

and the intrinsic Riemann tensor:

Rµ
νρσ = Pµ

α P
β
ν P

γ
ρ P

δ
σ
(4)Rα

βγδ +Kµ
ρKνσ −Kµ

σKνρ ,

where in the last equation (4)Rα
βγδ is the 4-dimensional Riemann tensor. Now it is straight-

forward to obtain the covariant form of the actions (2.2), (2.5), (2.7) by identifying the

11The Greek indices µ, ν, . . . are raised and lowered using the 4-dimensional metric gµν . The same

correspondence applies to the covariant derivatives carrying these indices.
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quantities appearing in the ADM decomposition with the appropriate combinations of ∂µϕ,

uµ, Pµν , Kµν , etc. Namely, writing the covariant objects in the unitary gauge we obtain:

X = N−2 ,

u0 = N , ui = 0 ,

P 00 = P 0i = 0 , P ij = −γij ,
Kij = Kij , etc.

In this way one ends up with an action describing GR plus a derivatively coupled khronon

field ϕ.

Postponing the detailed analysis to the following sections, let us discuss here an im-

portant issue about the counting of degrees of freedom in the Stückelberg picture. Note

that the higher spatial derivatives of Hořava theories in the unitary gauge translate in

the covariant picture into higher covariant derivatives of the khronon field. Consider, for

example, the covariant form of the action (2.5)

SII =
M2

0

2

∫

d4x
√−g

{

− (4)R− (λ− 1)K2 − αaµa
µ + . . .

}

, (2.19)

where K ≡ Kµ
µ, and Kµν and aµ depend on the khronon field via the expres-

sions (2.17), (2.18), (2.13); dots stand for the higher-order terms.12 Note that M0 appears

in front of the Einstein-Hilbert term in the action, thus we will assume it to be of order

the Planck mass,13

M0 ∼ 1019GeV.

It is easy to see that the second and the third terms in (2.19) contain four derivatives14

of ϕ. Thus in a general coordinate frame the equations of motion for ϕ are fourth-order

in time. Naively, this implies presence of ghosts and hence inconsistency of the theory.

However, as discussed in [13] this conclusion would be incorrect due to the following reason.

Though the action (2.19) has a covariant form, the quantization of the model, and hence

its physical content, does depend on the choice of the time coordinate. The counting of

degrees of freedom of the model must be performed in the preferred frame which is set

by the preferred foliation. In this frame the number of time derivatives in the equations

following from (2.19) is reduced to two, and the ghost modes are absent.

While the above statement is obvious in the unitary gauge where perturbations of the

khronon field are set to zero, it is rather non-trivial for general gauges where ϕ is allowed

to fluctuate. Let us formulate this statement more precisely. Consider perturbations of the

field ϕ around a background ϕ̄,

ϕ = ϕ̄+ χ .

We do not make any assumptions about the background ϕ̄, in particular, it does not need

to obey equations of motion. For the sake of the argument we treat the metric as external

12We remind that we have set the constant ξ in the potential (2.4) to 1.
13Precise relations will be worked out in section 5.
14The higher order terms omitted in (2.19) contribute with even more derivatives.
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assuming that it remains unperturbed; again, the background value ḡµν(x) can be arbitrary.

Let us now choose a coordinate frame such that the time coordinate coincides with the

background value of the khronon field,

t = ϕ̄ . (2.20)

Then in this frame the linearized equations of motion for χ following from (2.19) are second

order in time.

This proposition is proved in appendix A. As explained there, the proof uses in an

essential way the invariance of the action under the transformations (2.15). As a conse-

quence it also applies to the projectable model (2.2) which, being FDiff-invariant, obeys

this symmetry. On the other hand, the above statement does not hold for the model (2.7)

whose covariant form is not invariant under (2.15). We will see in section 4 that this makes

the equation of motion for the khronon in the model (2.7) fourth-order in time; as one can

anticipate, this will lead to certain pathologies.

3 Hořava’s projectable model

3.1 Gradient instability

In this section we will study the projectable case (2.2), where the lapse N is assumed to

obey the condition (2.1). Let us analyze the dynamics of small perturbations around the

flat background. At this stage it is convenient to work in the unitary gauge. We concentrate

on the scalar perturbations of the metric and use the decomposition (2.9), where due to

the projectability condition φ depends only on time. Substituting these expression into the

action (2.2) we obtain the following quadratic Lagrangian:

L(2)
I =

M2
0

2

{

− 2ψ̇2 − 2ψ∆ψ + 4ψ
√
∆Ḃ + 4ψË

− (λ− 1)
(
√
∆B + Ė + 2ψ̇

)2 − f1
M2

∗

(∆ψ)2 − g1
M4

∗

ψ∆3ψ

}

,

(3.1)

where the constants f1 and g1 are related to the coefficients in the potential (2.4); the precise

form of this relation is not important for us. Note that the perturbation of the lapse φ

drops out of the quadratic Lagrangian because of the projectability condition: when φ does

not depend on the space coordinates all terms containing it are total derivatives.

Integrating out the non-dynamical fields B and E, one finds

L(2)
I =

M2
0

2

{

2(3λ− 1)

λ− 1
ψ̇2 − ψ

(

2∆ +
f1
M2

∗

∆2 +
g1
M4

∗

∆3

)

ψ

}

. (3.2)

Let us discuss this result. The positivity of the kinetic term for the field ψ, needed for the

positivity of kinetic energy, imposes the restriction:

3λ− 1

λ− 1
> 0 . (3.3)
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On the other hand, the dispersion relation following from (3.2) has the form

ω2 = − λ− 1

3λ− 1

(

p2 − f1
2M2

∗

p4 +
g1

2M4
∗

p6

)

. (3.4)

We see that for λ satisfying (3.3) the field ψ is tachyonic at small values of spatial momenta.

This instability can be cut off by the second term in the bracket at p ∼M∗. One estimates

the maximal rate of instability as

Imω ∼
√

|λ− 1|M∗ . (3.5)

We conclude that the Minkowski space-time is unstable in the model at hand. This is

clearly problematic for the applications of this model to the description of the real four-

dimensional space-time which is observed to be smooth and nearly flat.

To reconcile the predictions of the model with the observations one can explore two

options. The first option would be to look for a stable ground state. Note that according

to the above results, such putative ground state would necessarily correspond to a highly

curved geometry thus contradicting observations. However, one could still entertain the

possibility that the cosmological evolution gives rise to the physical space-time composed of

many domains curved in different directions resulting in a small average curvature at scales

much larger than M−1
∗ . This scenario certainly deserves investigation, which is, however,

beyond the scope of the present paper. See [36] for the discussion of the instability in the

cosmological background.

Here we consider the alternative option that the instability of the Minkowski space is

slow enough, so that it does not develop during the life-time of the Universe. This yields

the bound,15
√

|λ− 1|M∗ < H0 , (3.6)

where H0 is the present Hubble expansion rate. Recall that the physical meaning of M∗ is

that of the scale suppressing higher-derivative operators in the gravitational action. In other

words, it is the genuine scale of quantum gravity in the model at hand. A theoretically

motivated value for M∗ would be a microscopic scale of order or somewhat below the

Planck mass. However, to be as general as possible, we choose not to impose any a priori

assumptions about the value of M∗. Then we are left with the experimental lower bounds

on M∗. The direct bound is rather mild; it comes from the tests of Newton’s law at the

distances ∼ 10µm [39] and reads,

M∗ & 0.1 eV. (3.7)

Even taking M∗ at the lower end of the allowed range, the stability condition (3.6) implies

that the parameter λ must be extremely close to 1,

|λ− 1| . 10−61 . (3.8)

15It was argued in [37, 38] that the instability may be cut off by non-linear effects which may lead to

weakening of the bound (3.6). However, this scenario looks highly non-trivial and a detailed analysis of the

non-linear dynamics of the model is needed to see if it is indeed realized. Thus we prefer to stick to the

bound (3.6) following from the linear theory.
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This is unappealing from the theoretical viewpoint. In particular, it is unclear if (3.8)

can be preserved by radiative corrections. Most importantly, though, we are going to see

that the condition (3.8) introduces a serious problem: the scalar mode becomes strongly

coupled at unacceptably low energies.

3.2 Strong coupling

In this section we extend the study of the projectable model beyond the linear level and

consider self-interaction of the scalar mode. As we will show, these considerations rule out

the model as a weakly coupled alternative to GR.

We will use the Stückelberg formalism described in section 2.2. Let us stress again that

at the perturbative level the formulation of the theory using the Stückelberg language is

equivalent to the original non-perturbative formulation. Thus all results that we are going

to obtain in the present section, including the phenomenon of strong coupling, can also

be derived without using this language [23]. The advantage of the Stückelberg formalism

is that it allows to associate explicitly strong coupling with the extra helicity-0 mode. To

construct the appropriate khronon action one notices [13] that the projectable model (2.2)

with the condition (2.1) is locally equivalent to the theory with the same action where

the lapse N is set to a constant; for example one can choose16 N = 1. Indeed, the only

difference between the two theories is in the equation obtained from the variation of the

action with respect to the lapse. But this equation in the projectable model has the

form of a Hamiltonian constraint integrated over the whole space and does not affect the

local physics, cf. [40]. In ref. [13] the condition N = 1 was implemented by introducing

a Lagrange multiplier, and it was shown that the classical low-energy dynamics of the

khronon field are equivalent to that of a pressureless fluid [40]. In the present paper we

adopt a different approach more suitable for the analysis of the quantum properties of the

system. Namely, we implement the constraint by adding to the action (2.2) a potential term

SM =

∫

d3x dt
√
γN

M4

4

(

1

N2
− 1

)2

and considering the limit M → ∞. In this limit the potential becomes very steep and

enforces N = 1. We will keep the coefficient M finite in the intermediate calculations and

take the limit only at the last step.

Now we are ready to write down the covariant form of the action for the projectable

model. Using the prescription of section 2.2 we obtain,

SI =
1

2

∫

d4x
√−g

[

−M2
0
(4)R+

M4

2
(X−1)2 − M2

λ

X

(

�ϕ− ∇µϕ∇νϕ

X
∇µ∇νϕ

)2]

, (3.9)

where ϕ is the khronon field, Mλ and X are defined respectively in (2.10) and (2.14).

In this expression we have omitted the terms with higher spatial derivatives from the

16This choice breaks the time reparameterization invariance. As already mentioned, an alternative way to

implement the projectability condition, which preserves the full FDiff symmetry, is to consider the α → ∞
limit of the non-projectable model. However, the approach adopted in this section allows to reach our goal

in a more direct manner.
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potential (2.4). Note that (3.9) coincides with the action of the ghost condensate model [19].

In particular, the last term in (3.9) is a covariant realization of the term with four spatial

derivatives of the ghost condensate from ref. [19]. However, whereas in [19] M and Mλ are

assumed to be of the same order, we are interested in the case Mλ ≪M .

To get a first feeling about the khronon dynamics it is instructive to neglect the back-

reaction of the khronon on the metric. Formally, this is achieved by considering the limit

M0 → ∞ , Mλ, M − fixed . (3.10)

The perturbations of the metric get frozen in this limit, so the khronon dynamics effectively

decouples from that of gravity. Following the terminology adopted in massive gravity we

refer to this regime as ‘decoupling limit’. Note that the phenomenological constraint (3.8)

impliesMλ ≪M0 so that one of the decoupling limit assumptions is automatically satisfied.

On the other hand the second assumptionM ≪M0 is in conflict with the fact that we want

to take M eventually to infinity in order to recover the projectable model. This means

that the proper analysis of the projectable model will require going beyond the previous

decoupling regime. However, working in the decoupling limit is still instructive. First, it

will allow to outline the steps of the analysis in a simplified setting. Second, we will use

the decoupling limit results in the next section where we extend the model to a version

of the ghost condensation. With this in mind, let us proceed for the moment with the

assumptions (3.10).

Setting the metric perturbations to zero, hµν = 0, and writing ϕ = t+ χ we obtain:

SIχ =

∫

d4x

[

M4χ̇2−M2
λ

2
(∆χ)2−M4 χ̇(∂iχ)

2−M2
λ χ̇
(

(∆χ)2+2∂iχ∂i∆χ
)

+ . . .

]

, (3.11)

where we have written only the most relevant (cubic) interaction terms. This action de-

scribes a non-relativistic scalar with derivative self-coupling. The dispersion relation for χ

reads,

ω2 =
M2

λ

2M4
p4 . (3.12)

We can compare this dispersion relation with that obtained previously for the scalar mode

of the projectable model, eq. (3.4). In deriving (3.11) we neglected the higher-derivative

terms. This explains the absence in (3.12) of terms with higher powers of momentum

suppressed by M∗. Moreover, in the projectable limit M → ∞ (3.12) reduces to ω2 = 0

which coincides with the |λ−1| → 0 limit of (3.4). The latter corresponds to the decoupling

limit (3.10).

From the presence of derivative interactions in (3.11) one expects the field χ to become

strongly coupled above certain energy/momentum scale. The easiest way to identify this

scale is to perform power-counting. Due to the non-relativistic form of the dispersion

relation for the χ-field the power counting rules in our case are different from the standard

ones. To identify the proper rules we follow the approach of [13, 19] (see also [41]). One

notices that the quadratic part of the action is invariant under the scaling transformations

x 7→ b−1x , t 7→ b−2t , χ 7→ b1/2χ .
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The interaction terms in (3.11) scale as b1/2 and b5/2 implying that the strength of the

interaction grows at short distances. To simplify the further analysis let us choose the

units in such a way that the quadratic part of the action takes canonical form, i.e. it

contains only order-one numerical coefficients. This is achieved by the rescaling

t =M2M−1
λ t̂ , χ =M−1M

−1/2
λ χ̂ ,

which yields,

SIχ =

∫

d3xdt̂

[

˙̂χ2− (∆χ̂)2

2
−MM

−3/2
λ

˙̂χ(∂iχ̂)
2−M−3M

1/2
λ

˙̂χ
(

(∆χ̂)2+2∂iχ̂∂i∆χ̂
)

+ . . .

]

.

Now the momentum and frequency cutoffs (strong coupling scales) of the theory are iden-

tified as the appropriate powers of the scales suppressing the interaction terms,

Λp, dec = min{M−2M3
λ , M

6/5M
−1/5
λ } , (3.13)

Λω̂, dec = min{M−4M6
λ , M

12/5M
−2/5
λ } ,

where the subscript “dec” reminds that these expressions are obtained in the decoupling

limit. Here ω̂ is the frequency corresponding to the rescaled time t̂; going back to the

physical frequency one obtains

Λω, dec = min{M−6M7
λ , M

2/5M
3/5
λ } . (3.14)

Note that the cutoffs in momentum and energy are different reflecting the non-relativistic

nature of the theory; they are related by the dispersion relation (3.12).

In the projectable limit M → ∞ both cutoffs (3.13), (3.14) vanish which would imply

that the model is strongly coupled at all scales. However, as already pointed above, this

reasoning has a caveat: the expressions (3.13), (3.14) are obtained under the assumptions

M0 → ∞ (which in particular implies M ≪ M0). We are going to see that a finite

value of M0 raises the cutoff from zero; but it is still too low to be phenomenologically

acceptable, cf. [23].

To obtain the correct value of the cutoff we have to take into account the fluctuations

of the metric. Let us first see how this affects the analysis at the quadratic level. Taking

the metric perturbations in the form (2.9) and expanding the action (3.9) to quadratic

order we obtain,

S
(2)
I =

∫

d4x

[

M2
0

2

(

− 2ψ̇2 − 2ψ∆ψ + 4φ∆ψ + 4ψ
√
∆Ḃ + 4ψË

)

+M4(χ̇− φ)2 − M2
λ

2

(
√
∆B + Ė + 2ψ̇ +∆χ

)2
]

.

(3.15)

Note that the first line here is nothing but the quadratic part of the standard Einstein-

Hilbert action. If one fixes in (3.15) the gauge χ = 0 and takes the limit M → ∞ forcing φ

to be constant one recovers the unitary gauge Lagrangian17 (3.1). For our present purposes

17This procedure does not reproduce the last two terms in (3.1). These higher-derivative terms have been

omitted in the low-energy action (3.15).
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it is more convenient to choose instead the gauge

B = 0 , 2ψ + E = 0 ,

where khronon perturbations do not vanish. To integrate out the non-propagating degrees

of freedom recall that we are working in the regime Mλ ≪ M0. From the dispersion

relation (3.4) we know that in this case the frequency of scalar perturbations is much

smaller than the spatial momentum,

ω ∼ Mλ

M0
|p| ≪ |p| . (3.16)

Thus we can neglect the term ψ̇2 compared to ψ∆ψ in (3.15). Then the equation of motion

of ψ implies ψ = φ; substituting this into the action we obtain,

S
(2)
I =

∫

d4x

[

M2
0 φ∆φ+M4(χ̇− φ)2 − M2

λ

2
(∆χ)2

]

.

Varying with respect to φ one finds

φ =
M4χ̇

M2
0∆+M4

, (3.17)

and hence

S
(2)
I =

∫

d4x

[

M2
0M

4

M2
0∆+M4

χ̇∆χ̇− M2
λ

2
(∆χ)2

]

. (3.18)

This gives the dispersion relation

ω2 = − M2
λ

2M2
0

p2 +
M2

λ

2M4
p4 , (3.19)

which reduces to (3.12) in the decoupling limit M0 → ∞. On the other hand, in the

projectable limit M → ∞ it correctly reproduces the first term in the exact dispersion

relation (3.4).

Let us turn to the interactions. One has to compare contributions coming from various

terms in the action (3.9). We start by considering the second term in (3.9). Due to the

inequality (3.16) the leading interaction is given by the cubic term with the smallest number

of time derivatives. A simple calculation yields

S
(3)
M =

∫

d4x
[

−M4(χ̇− φ)(∂iχ)
2 + . . .

]

=

∫

d4x

[

− M2
0M

4

M2
0∆+M4

∆χ̇(∂iχ)
2 + . . .

]

, (3.20)

where in the second line we substituted φ from (3.17). Note that in the decoupling limit

this interaction term reproduces the third term in the action (3.11). Next, let us estimate

the contributions from the first and third terms in (3.9) and show that they are suppressed

compared (3.20). This can be done without explicit calculation on purely dimensional

grounds. Indeed, (4)R does not explicitly depend on the khronon and has mass dimension
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two. Thus the possible leading contribution (the one without time derivatives when written

in terms of the metric) has the schematic form

M2
0

√−g (4)R ∼M2
0φ

2∆φ ∼M2
0 χ̇

2∆χ̇ ,

where in the last relation we used eq. (3.17) and took the limitM → ∞. This contains more

time derivatives than (3.20) and hence is suppressed. Finally, the schematic form of the

leading contribution from the third term in (3.9) is M2
λχ̇(∆χ)

2. This is clearly suppressed

compared to (3.20) by the ratio (Mλ/M0)
2.

In the projectable limit M → ∞ both the quadratic action (3.18) and the interaction

term (3.20) simplify. Combining them together we obtain

SI =

∫

d4x

[

M2
0 χ̇∆χ̇− M2

λ

2
(∆χ)2 −M2

0∆χ̇(∂iχ)
2 + . . .

]

.

It is now straightforward to find the strong coupling scales of the model. Upon bringing

the quadratic part of the action into canonical form by the rescaling

t =M0M
−1
λ t̂ , χ =M

−1/2
0 M

−1/2
λ χ̂ ,

one finds that the interaction term is suppressed by the parameter

Λp =M
3/2
λ M

−1/2
0 ,

which thus sets the momentum cutoff of the theory. The energy cutoff contains additional

factor MλM
−1
0 and reads

Λω =M
5/2
λ M

−3/2
0 .

Note that these cutoffs go down to zero in the naive GR limit λ → 1 (Mλ → 0). This

agrees with the results of [23].

Using the definition of Mλ, eq. (2.10), we find that the stability bound (3.8) implies

Λp . 10−17 eV. (3.21)

This corresponds to the distance of order 1013 cm, within which the theory is strongly

coupled and the perturbative analysis breaks down. Note that the strong coupling cannot

be resolved by the higher-derivative terms: such terms would lead to sizable modifications

of the Newton’s law that are forbidden at these distances. We conclude that the projectable

model fails to provide adequate description of gravity within distances ∼ 1013 cm.

4 Extension à la ghost condensation

The analysis of the previous section suggests a possible way to address the problems of the

projectable model. The idea is to consider a modification of the theory with finite value

of the parameter M in the khronon action (3.9) [13]. This approach implies reducing the

symmetry of the theory from FDiffs down to RFDiffs as the khronon action is no longer

invariant under the general reparameterizations (2.15) but only under the shifts (2.16).
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We presently explore this option and show that in spite of the possibility to improve the

behavior of the khronon at low energies the theory still encounters serious problems in the

UV completion.

As already pointed out, at finite values of M the low-energy khronon action (3.9)

coincides with the action of the ghost condensate model [19]. The latter is a consistent

effective theory describing low-energy modification of GR. From the EFT point of view it is

natural to assume that the scalesM andMλ appearing in (3.9) are of the same order. Then

both the momentum and frequency cutoffs obtained in the decoupling limit (3.13), (3.14)

are finite and of order M . From the dispersion relation (3.19) one observes that the

instability of the scalar graviton at low values of momenta is still present in this model but

is truncated by the quartic term at

p ∼M2/M0 .

This corresponds to the maximal instability rate

Imω ∼M3/M2
0 .

This rate is slower than the present rate of Hubble expansion for

M . 10MeV, (4.1)

which would make the instability harmless.18

The problems appear, however, when one tries to UV complete the model to a renor-

malizable theory of gravity. First, a necessary requirement to obtain a weakly coupled UV

completion is that the strong coupling observed within low-energy EFT must be resolved

by the higher-derivative operators, cf. [27]. This implies that the scale M∗ suppressing

higher derivatives should be lower than M , M∗ < M . Thus we obtain

M∗ . 10MeV. (4.2)

Note that this is many orders of magnitude smaller thanM0 so that the model contains two

very different scales. For the gravitational sector alone, this seems to be only an esthetic

problem: the values (4.2) are compatible with the direct gravitational bound (3.7). Besides,

we expect this hierarchy to be stable under radiative corrections. The scale which effectively

truncates the power-law divergencies in the model is the lower scale M∗; therefore, the

corrections to both M0 and M∗ are small.19 However, the real tension arises when we take

into account coupling of the theory to matter. The size of the higher-derivative Lorentz

violating terms in the action of the matter sector is experimentally constrained from below.

The leading effect of these terms is the modification of dispersion relations of the matter

fields at high energies due to contributions with higher powers of spatial momentum, see

18It is argued in [42] that nonlinear dynamics of the ghost condensate suppresses the exponential growth

of perturbations predicted by the linear theory, making the model phenomenologically viable for M up to

100GeV.
19See also the discussion of a similar issue in the next section.
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eq. (5.20) below. The observational lower bound on the scale M
(mat)
∗ suppressing these

contributions, eq. (5.21), is much higher than 10MeV. On general grounds one expects

the scale M
(mat)
∗ to enter into radiative corrections for M∗ thus giving rise to a fine-tuning

problem.20 A more detailed study of this issue is beyond the scope of the present article.

The second problem stems from the reduction of the symmetry from FDiffs down

to RFDiffs. To get a renormalizable theory one must consider the most general RFDiff-

invariant action (2.7) which contains, among other terms, the term with time derivatives

of the lapse,21

Sλ1
=
M2

λ1

2

∫

d3x dt
√
γN (Ṅ −N i∂iN)2 , (4.3)

where Mλ1
is defined in (2.10). The easiest way to see that this term leads to pathologies

is to adopt the Stückelberg picture. The covariant form of (4.3) reads

Sλ1
=
M2

λ1

2

∫

d4x
√−g (∇µϕ∇νϕ∇µ∇νϕ)

2

X2
. (4.4)

Let us work in the decoupling limit; the conditions for the validity of this approximation

will be specified below. One writes ϕ = t+χ and expands (4.4) up to quadratic order in χ:

Sλ1
=
M2

λ1

2

∫

d4x (χ̈)2 .

This contains four time derivatives of the khronon perturbations which suggests the pres-

ence of a second helicity-0 mode besides the excitation studied so far. This expectation will

be confirmed by explicit calculations below. As the new mode appears due to higher time

derivatives one is tempted to qualify it as a ghost. In fact, we are going to show that this

mode also exhibits a gradient instability, so it is more appropriate to call it tachyonic ghost.

In appendix B we discuss the difference between the tachyonic ghost and an ordinary ghost

with stable dispersion relation.22 In particular, we demonstrate there that the presence of

the tachyonic ghost is compatible with the fact that in the unitary gauge the action for the

model, eq. (2.7), is only second order in time derivatives.

To proceed we need the quadratic action for the khronon perturbations. This is ob-

tained in the usual way by first covariantizing the terms entering (2.7), (2.8) and then

taking the decoupling limit. This yields,

SIIIχ =

∫

d4x

[

M2
λ1

2
(χ̈)2 +M4χ̇2 − M2

λ

2
(∆χ)2 +

M2
α

2
(∂iχ̇)

2

]

. (4.5)

In deriving this expression we have omitted the contributions of terms with higher spatial

derivatives; thus the domain of validity of (4.5) is restricted to spatial momenta smaller

than M∗. The last term in (4.5) represents the contribution of the term αaia
i in the

20The fine tuning may be absent if there is a symmetry protecting M∗ from this kind of corrections.
21Even if this term is absent in the bare action, one expects it to be generated by quantum corrections.
22Of course, both type of ghosts signal pathologies of the theory.
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potential (2.8) (recall the definition ofMα in (2.10)). The action (4.5) describes two modes

with dispersion relations

ω2 = −
(

M4

M2
λ1

+
M2

α

2M2
λ1

p2

)

±
√

(

M4

M2
λ1

+
M2

α

2M2
λ1

p2

)2

+
M2

λ

M2
λ1

p4 . (4.6)

At small values of momenta we find,

ω2
old =

M2
λ

2M4
p4 + . . .

ω2
new = −2M4

M2
λ1

− M2
α

M2
λ1

p2 − M2
λ

2M4
p4 + . . . . (4.7)

In the first expression one recognizes the dispersion relation (3.12) for the previously en-

countered gapless mode. The second mode (4.7) is unstable. It possesses a frequency gap

of order M2/Mλ1
. For the choice Mλ1

∼ M , natural from the low-energy effective theory

point of view, the frequency of this mode lies beyond the scale M . Thus this mode would

be simply discarded as unphysical in the EFT considerations with cutoffM , such as in [19].

However, our case is different: we are looking for a UV-complete model and thus have to

take into account all possible excitations of the system.

According to the above expressions the instability rate of the new mode grows with

momentum, the fastest instability occurring at |p| ∼ M∗. [At larger momenta terms with

higher spatial derivatives in the full action (2.7) can, in principle, stabilize the mode.] A

lower estimate for the instability rate is obtained by keeping only the last term under the

square root in eq. (4.6). This yields,

Im ωnew &M
3/2
∗ M

−1/2
λ1

, (4.8)

where we have assumed

M ∼Mα ∼Mλ &M∗ . (4.9)

Requiring the instability to be slower than the Hubble rate H0 and taking into account the

experimental bound (3.7) on M∗ one obtains,

Mλ1
& 1060 eV ≈ 1032M0 . (4.10)

Having such a huge value for Mλ1
is rather unsatisfactory. First, it means that one intro-

duces into the theory, besides M∗ and M0, one more hierarchical scale Mλ1
≫ M0. We

do not know whether this hierarchy is technically natural or not. More importantly, this

term also gives rise to interactions which are enhanced by the large value of Mλ1
. We will

demonstrate shortly that this reintroduces the strong coupling problem.

Before addressing the interactions let us make a step back and discuss the conditions

for the validity of the decoupling limit. The simplest requirement would be that all the

parameters in the khronon action (4.5) are smaller than the Planck mass. This is automat-

ically satisfied by the parameters Mλ, M , Mα that must be small for the stability of the

gapless (ghost-condensate) mode. However, the value (4.10) of Mλ1
clearly violates this
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condition. Thus additional considerations are needed to establish whether the decoupling

limit holds or not for Mλ1
as large as (4.10). A rigorous method to do this is to verify that

the terms in the Lagrangian describing mixing between the khronon field and the metric

components are small compared to the other terms. Instead of following this route we will

take a shortcut and compare the decoupling limit dispersion relations (4.6) for the scalar

modes with the exact expressions; their coincidence will serve as a criterion for decoupling.

The exact dispersion relations are obtained in appendix B within the unitary gauge, see

eq. (B.2). In the case Mλ1
≫M0 they simplify to,23

ω2 =

(

− M2
λ

4M2
0

±
√

M4
λ

16M4
0

+
M2

λ

M2
λ1

)

p2 .

On the other hand, the decoupling limit result (4.6) at large Mλ1
becomes

ω2 = ± Mλ

Mλ1

p2 . (4.12)

The two expressions coincide and thus the decoupling holds, provided

Mλ1
≪ M2

0

Mλ
. (4.13)

Note that this allows for Mλ1
to be much larger than M0. Taking Mλ ∼ 0.1 eV as in

the previous estimates (see also the footnote 23) one finds that the decoupling limit is

applicable up to Mλ1
of order (4.10).

The previous considerations show that to estimate the scale of strong coupling we can

concentrate on the self-interaction of the khronon neglecting its mixing with the metric.

Clearly, for largeMλ1
the leading interactions come from the term (4.4). At the cubic level

we obtain the following contribution,

S
(3)
λ1

= −2M2
λ1

∫

d4x χ̈∂iχ̇∂iχ .

This must be combined with the quadratic action (4.5). The form of the dispersion re-

lation (4.12) shows that at large Mλ1
the latter action is dominated by the first and the

third terms. Retaining only these two terms we obtain the khronon action in the limit of

interest

SIIIχ =

∫

d4x

[

M2
λ1

2
(χ̈)2 − M2

λ

2
(∆χ)2 − 2M2

λ1
χ̈∂iχ̇∂iχ+ . . .

]

.

23Note that these expressions immediately imply a lower estimate for the instability rate of the new mode

which is complementary to (4.8),

Imωnew >
Mλ√
2M0

|p| .

This estimate does not depend on Mλ1
. Evaluating it at |p| ∼ M∗ and requiring the instability to be slower

than the Universe expansion rate we obtain the upper bound

Mλ . 0.1 eV. (4.11)

This is marginally compatible with the requirement (4.9) and the experimental bound (3.7).
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The quadratic part is brought to canonical form by the rescaling

t =M
−1/2
λ M

1/2
λ1

t̂ , χ =M
−3/4
λ M

−1/4
λ1

χ̂ .

From the scale suppressing the interaction term in the resulting action one reads off the

momentum and frequency cutoffs,

Λp =M
5/4
λ M

−1/4
λ1

, Λω =M
7/4
λ M

−3/4
λ1

.

Substituting here Mλ from (4.11) and Mλ1
from (4.10) one obtains24 Λp . 10−16 eV. Such

a low cutoff is phenomenologically unacceptable. This shows that the initial hope, namely

that the model could be UV complete and weakly coupled, is not met in reality.25

The general conclusion of this section is that reducing the symmetry of the theory from

FDiff to RFDiffs cannot possibly improve the scalar sector. The reason is that the smaller

symmetry allows for the new operators such as (4.3) which bring in additional difficulties

in the form of tachyonic ghosts. In retrospect, we learn that the symmetry under the

FDiffs (or the khronon reparameterizations (2.15) in covariant language) plays the quite

important role of preventing this kind of pathologies. In the next section, we return to the

other model compatible with the FDiffs — the general non-projectable case — where this

problem is automatically turned away.26

5 The healthy extension

5.1 Stability and absence of strong coupling

We presently consider the non-projectable FDiff-invariant model with the ac-

tion (2.5), (2.6). We are going to show that, remarkably, the problems associated to

the additional modes which plague the two models considered previously are absent in this

case. This model was first introduced in [26] where it was called “healthy” (or “consistent”)

extension of Hořava gravity. According to the discussion in section 2.1, it correctly imple-

ments the spirit of the Hořava’s proposal using the rules of quantum field theory in the

non-projectable case. The preliminary study of the properties of this model was reported

in [26, 27].

Let us start by studying the spectrum of linear perturbations around flat background.

As usual, we concentrate on the scalar sector and use the decomposition (2.9). In the

24Note that this is close to the result in the projectable case, eq. (3.21).
25One may wonder if it is possible to cure the model by choosing some of the parameters in the action (4.5)

negative. A simple reasoning demonstrates that this is not the case. The analysis in the unitary gauge

(appendix B) shows that negative values of M2

λ1
, M2

λ imply negative energies in the UV. Next, making

M2

α negative does not essentially improve the behavior of the tachyonic ghost. Finally, the choice M4 < 0,

while removing the instability from the mode (4.7), destabilizes the old gapless mode. This brings us back

to the situation studied in the previous section.
26Clearly, the symmetry (2.15) must be non-anomalous in order that this statement remains valid in the

quantum theory. This question will not be addressed here.
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unitary gauge the quadratic Lagrangian reads

L(2)=
M2

0

2

[

−2ψ̇2−2ψ∆ψ+4φ∆ψ+4ψ
√
∆Ḃ+4ψË−(λ−1)

(√
∆B+Ė+2ψ̇

)2

+α(∂iφ)
2− f1

M2
∗

(∆ψ)2− 2f2
M2

∗

∆φ∆ψ− f3
M2

∗

(∆φ)2− g1
M4

∗

ψ∆3ψ− 2g2
M4

∗

φ∆3ψ− g3
M4

∗

φ∆3φ

]

,

(5.1)

where fn, gn are related to the coefficients in front of the higher derivative operators in

the potential (2.6); the precise form of this relation is not important for our purposes.

Integrating out the non-dynamical fields B, E and φ we obtain,

L(2)
II =

M2
0

2

{

2(3λ− 1)

λ− 1
ψ̇2 + ψ

P [M−2
∗ ∆]

Q[M−2
∗ ∆]

∆ψ

}

, (5.2)

where the polynomials P , Q have the form,

P [x] = (g22 − g1g3)x
4 − (g1f3 + g3f1 − 2g2f2)x

3 + (f22 − 4g2 − f1f3 − 2g3 − g1α)x
2

− (2f3 + f1α+ 4f2)x+ (4− 2α) , (5.3)

Q[x] = g3x
2 + f3x+ α . (5.4)

The Lagrangian (5.2) describes a single mode which is free of pathologies provided that

two conditions are satisfied. First, the positivity of the kinetic term can be achieved by

choosing27 λ > 1. Second, from the dispersion relation of the propagating mode ψ,

ω2 =
λ− 1

2(3λ− 1)

P [−p2/M2
∗ ]

Q[−p2/M2
∗ ]

p2 , (5.5)

one reads off the condition to avoid exponential instabilities,

P [x]/Q[x] > 0 at x < 0 . (5.6)

This puts certain restrictions on the coefficients α, fn, gn, that are presented in appendix C.

In particular, at low energies the dispersion relation takes the form,

ω2 =
λ− 1

3λ− 1

(

2

α
− 1

)

p2 . (5.7)

Thus stability requires28.

0 < α < 2 . (5.8)

Note that the dispersion relation (5.7) describes a gapless mode propagating with constant

velocity which is generically different from one (the velocity of the helicity-2 modes, i.e.

gravitons). This signals that in the model at hand Lorentz symmetry is broken down

27We do not consider the other option λ < 1/3 because it corresponds to a strong deviation from GR,

unacceptable from the phenomenological viewpoint.
28As discussed in section 2.1, by taking the limit α → ∞ in the model considered here one obtains the

projectable Hořava’s model. Clearly, the corresponding values of α are outside the stability range (5.8), so

we again find that in the projectable model the Minkowski background is unstable
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to arbitrary low energies. In the UV the dispersion relation (5.5) takes the form ω2 ∝ p6

which obeys the anisotropic scaling with z = 3. This is compatible with the power-counting

arguments in favor of renormalizability.

It is important to realize that the healthy behavior of the scalar mode can be achieved

simultaneously with the stability in the sector of the helicity-2 perturbations. Consider

operators in the action (2.5), (2.6) which contribute at the quadratic level. Upon integrating

by parts and using Bianchi identities one obtains a list of 10 inequivalent combinations,

(dim 2) R, aia
i ,

(dim 4) RijR
ij , R2, R∇ia

i, ai∆a
i ,

(dim 6) (∇iRjk)
2, (∇iR)

2, ∆R∇ia
i, ai∆

2ai .

The dispersion relation of the helicity-2 modes depends only on the coefficients in front of

the leftmost operator in each line. After fixing these to ensure stability of the helicity-2

modes, we still have the freedom to choose the coefficients of the remaining operators in

the list. The number of free parameters matches with the number of coefficients α, fn, gn
in the scalar Lagrangian implying that we have freedom to adjust the latter coefficients to

satisfy (5.6).

To get more insight into the dynamics of the model (in particular, at the nonlinear

level), we make use of the Stückelberg formalism. The covariant form of the model action

was given before, see (2.19). It is convenient to rewrite it as

SII = −M
2
0

2

∫

d4x
√−g

{

(4)R+ (λ− 1)(∇µu
µ)2 + αuµuν∇µu

ρ∇νuρ + . . .
}

, (5.9)

where uµ is related to the khronon field ϕ by (2.13) and dots stand for the terms with

higher derivatives which are not important at low energies. The action (5.9) is closely

related [27, 35] to the action of the Einstein-aether theory [31] (see [32] for a review). The

latter is an effective theory describing breaking of Lorentz-invariance by a time-like vector

field with unit norm. The difference between our case and the Einstein-aether theory is

that in our model the unit vector uµ is by construction hypersurface orthogonal, i.e. it

is completely characterized by the scalar khronon field ϕ. The similarity between (5.9)

and the Einstein-aether theory will be exploited in the next subsections where we study

phenomenological consequences of the model.

Let us use (5.9) to study interactions of the khronon perturbations at low energies.

It is convenient to introduce the scales Mλ and Mα as defined in (2.10). These scales

characterize the khronon action. We will assume them to be much smaller than M0, so

that the metric perturbations are frozen out (in other words, we will be working in the

decoupling limit). This assumption is justified by the phenomenological bounds (5.35) that

will be obtained in section 5.4, and which constrain the dimensionless parameters |λ− 1|,
α to be much smaller than one.29 Writing down ϕ = t+χ and expanding (5.9) up to cubic

29Note though that the bounds (5.35) are much weaker than the analogous bounds for the models of the

previous sections, cf. (3.8), (4.1).
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order in χ we obtain,

SIIχ =

∫

d4x

[

M2
α

2
(∂iχ̇)

2 − M2
λ

2
(∆χ)2 −M2

λ χ̇
(

(∆χ)2 + 2∂iχ∂i∆χ
)

+M2
α

(

χ̇∂iχ̈∂iχ− ∂iχ̇∂jχ∂i∂jχ
)

+ . . .

]

. (5.10)

Let us analyze this expression. The action (5.10) describes a propagating mode with

dispersion relation

ω2 =
M2

λ

M2
α

p2 . (5.11)

This coincides with the exact dispersion relation (5.7) in the limit |λ − 1|, α ≪ 1. The

form of the action (5.10) is uniquely fixed by the reparameterization symmetry (2.15) of

the khronon and by the Lorentz symmetry, both non-linearly realized on the khronon

perturbation χ. Up to quadratic order the reparameterization transformations read

χ 7→ χ+ ǫ(t) + ǫ̇(t)χ+ . . . ,

where ǫ(t) is an arbitrary function of time. Under boosts the field χ transforms as

χ 7→ χ+ εixi + εixiχ̇+ εit∂iχ+ . . . ,

where εi is a 3-dimensional vector characterizing the boost. It is straightforward to check

that (5.10) is the only action invariant under these symmetries up to cubic order. Finally,

one observes that (5.10) contains an interaction term with three time derivatives; it pro-

duces a contribution with third time derivative in the equation of motion for χ. One may

be worried that this leads to appearance of a new unwanted degree of freedom. However,

from the analysis in the unitary gauge, we know that this degree of freedom is spurious

and it should be possible to eliminate it with an appropriate choice of variables (which

corresponds to fixing the foliation consistently). To see how this is done explicitly, one

considers the change of variable

χ = χ̃+ χ̃ ˙̃χ .

This substitution can be interpreted as the change of the time foliation, t 7→ t−χ. Indeed,
up to cubic order χ̃(t,x) = χ(t − χ,x). In terms of the new variable the action takes

the form

SIIχ =

∫

d4x

[

M2
α

2
(∂i ˙̃χ)

2 − M2
λ

2
(∆χ̃)2 −M2

λ χ̃∆χ̃∆ ˙̃χ

+M2
α

(

1

2
˙̃χ(∂i ˙̃χ)

2 − ∂i ˙̃χ∂jχ̃∂i∂jχ̃

)

+ . . .

]

. (5.12)

We observe that a term with three time derivatives is still present but its structure has

changed: its contribution to the equation of motion contains now only second time deriva-

tive. One concludes that no new degrees of freedom appear. It is worth emphasizing that

the existence of the change of variables with the above properties follows from the general
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statement proved in appendix A that the equations of motion for the khronon field are

second order in time for an appropriate choice of the coordinate system.30

The low-energy action (5.12) contains derivative couplings which become stronger as

the energy / momentum grows. Let us estimate the scale where the strength of the inter-

actions would become of order one. Performing the rescaling

t =MαM
−1
λ t̂ , χ̃ =M−1/2

α M
−1/2
λ χ̂ ,

which casts the quadratic part of the action into canonical form we obtain,

SIIχ =

∫

d3x dt̂

[

(∂i ˙̂χ)
2

2
− (∆χ̂)2

2
− M

1/2
λ

M
3/2
α

χ̂∆χ̂∆ ˙̂χ

+
M

1/2
λ

2M
3/2
α

˙̂χ(∂i ˙̂χ)
2 − M

1/2
α

M
3/2
λ

∂i ˙̂χ∂jχ̂∂i∂jχ̂+ . . .

]

(5.13)

From the scales suppressing the interaction terms one reads out the momentum and fre-

quency cutoffs of the low-energy description:

Λp = min
{

M−1/2
α M

3/2
λ , M3/2

α M
−1/2
λ

}

, (5.14)

Λω = min
{

M1/2
α M

1/2
λ , M−3/2

α M
5/2
λ

}

. (5.15)

If (5.9) were the full action of the theory, it would become inconsistent at energies /

momenta above these scales [44]. Note that Λω and Λp are related by the dispersion rela-

tion (5.11) and are different if the khronon velocity differs from 1. The scales (5.14), (5.15)

are low whenever there is a large discrepancy between Mα and Mλ. On the other hand, in

the case Mα ∼Mλ the cutoffs essentially coincide with Mα,

Λp ∼ Λω ∼Mα .

We concentrate on this latter case in what follows.

Of course, the action (5.9), and hence (5.13), represents only the low-energy part of

the full action (2.5). So the existence of a finite cutoff for the low-energy theory (5.9) does

not imply any inconsistency. At energies/momenta larger than M∗ one has to take into

account the higher-derivative terms in the full action, and any conclusions drawn from (5.9)

become invalid. By construction, the role of the higher-derivative terms in (2.5) is to modify

the power-counting rules at high energies in such a way that all the interactions become

marginal under the anisotropic scaling. One concludes that strong coupling is avoided

provided the scale M∗ of higher-derivative operators is lower than31 Λp,ω [27]. This gives

the upper bound

M∗ .Mα . (5.16)

30Alternatively, the absence of yet extra modes in addition to the two helicity-2 modes and one helicity-0

mode can be established directly within the original non-relativistic formulation (2.5), (2.6) by counting

the number of independent initial conditions in the linearized equations of motion around arbitrary back-

grounds [13, 26]. Derivation of the same result within the Hamiltonian approach is present in [43].
31In particular, one can show [27] that in theories obeying the anisotropic scaling (1.1) with z = 3 in the

UV the tree level unitarity, whose breaking usually serves as the signal of strong coupling, is automatically

preserved provided M∗ < Λp,ω. This is essentially due to the peculiar kinematics of these theories that

makes the unitarity bounds milder at high energies as compared to the relativistic case.
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This is a remarkable inequality: it relates the scale of quantum gravityM∗ with the param-

eter Mα of the low-energy Lagrangian which can be probed experimentally. The experi-

mental bound (5.35) derived in section 5.4 constrainsMα to be lower than 1015÷1016GeV.

According to (5.16) this translates into the bound

M∗ . 1015 ÷ 1016GeV. (5.17)

Let us emphasize that, contrary to the claim in [44], the choice ofM∗ parametrically below

M0 does not introduce a fine-tuning in the model. In fact, having M∗ somewhat below M0

is technically natural. From the point of view of the low-energy theory the reason is that

the cutoff for the power-law growing of the couplings is set by the lower scale M∗. Thus

neither M0 nor M∗ receive large quantum corrections.

5.2 Phenomenological considerations

The absence of notorious pathologies in the model (2.5) makes it worth to have a closer

look on its phenomenological consequences. We are interested in the phenomenology of the

model at energies much lower than M∗. The natural language for this analysis is provided

by the Stückelberg formalism where at low energies the theory reduces to GR plus the

khronon field. The non-trivial phenomenology of the model is clearly interpreted in terms

of the khronon. Before proceeding we have to specify the coupling of the khronon to the

fields of the Standard Model, to which we collectively refer as “matter”.

The FDiff symmetry requires that matter couples to the khronon via geometrical ob-

jects, such as uµ, aµ, Kµν , etc. Possible interactions fall into two classes having qualitatively

different phenomenological consequences. The first class consists of couplings which contain

derivatives of the vector uµ; examples of this type of couplings are:

aµψ̄γ
µψ , Kµνψ̄γµ∂νψ , (5.18)

where ψ is some fermionic matter field. Importantly, the combinations of the khronon

field entering into the operators (5.18) have vanishing VEV in the flat background. There-

fore, these operators start linear in the khronon perturbation χ and describe its derivative

interaction with matter. It is easy to see that in terms of canonically normalized fields

these couplings have dimensions larger than four32 and are suppressed by the high-energy

scale M∗. Given that M∗ is large, one expects the effect of these operators to be highly

suppressed at the energies accessible to the present-day experiments. It is still possible

that couplings of the type (5.18) may be probed in some precision measurements. This

issue is, however, beyond the scope of the present article.

The second, more ‘dangerous’, class of operators describe coupling of the matter fields

directly to the vector uµ; examples are:

uµψ̄γ
µψ , uµuνψ̄γµ∂νψ , uµuνψ̄∂µ∂νψ . (5.19)

The crucial property of these operators is that they give rise to Lorentz-violating effects

within the Standard Model as they couple matter fields to the VEV of uµ. Such effects and

32We use here the standard power-counting rules relevant for the low-energy physics.
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constraints on them have been extensively studied in the literature, see [7–10] for reviews.

The effects of the operators (5.19) fall into two categories: those that become pronounced

only at high energies, and those that persist at all energy scales.

Effects of the first category are associated to Lorentz-violating operators of dimensions

larger than four such as the last operator in (5.19). The strength of these effects is charac-

terized by the scale suppressing the higher-order operators which we will collectively denote

as M
(mat)
∗ (one should keep in mind though that this scale can, in general, be different for

different operators). In the model at hand it is natural to assume that M
(mat)
∗ is of the

same order of magnitude as the scale M∗ appearing in the gravitational sector. However,

we stress that this is an additional assumption: in general the scales M∗ and M
(mat)
∗ may

be different, so we prefer to keep different notations for them.

The experimental data constrain the scale M
(mat)
∗ from below. A rather robust bound

comes from astrophysical observations and exploits the fact that the higher-order operators

lead to modification of the dispersion relations of the matter fields, in particular, photons,

at high momenta33

E2 = m2 + p2 + η
p4

M
(mat)
∗

+ . . . , (5.20)

where η is a dimensionless coefficient. This would produce a frequency dependent delay

in the arrival times of γ-rays emitted by a distant source. The absence of such a time-lag

in the signals coming from active galactic nuclei [47] and γ-ray bursts [48, 49] yields the

constraint (assuming the coefficient η in (5.20) is of order one),

M
(mat)
∗ & 1010 ÷ 1011GeV. (5.21)

In the simple case whenM∗(mat) andM∗ are of the same order this translates into the lower

bound on M∗. Note that this is several orders of magnitude below the upper limit (5.17)

imposed by the absence of strong coupling.

It has been argued that considerably stronger constraints on the scale M
(mat)
∗ come

from the physics of ultra-high-energy cosmic rays (UHECR) [50–53]. These constraints are,

however, less robust than (5.21) as they are sensitive to a number of assumptions about

the sources of cosmic rays and the UHECR chemical composition (e.g. the constraints

essentially disappear if UHECR of the highest energies consist of heavy nuclei [53]). Thus

we do not discuss these constraints in the present paper.

Finally, violation of Lorentz symmetry in the matter sector by operators of dimensions

3 and 4, such as the first and the second operators in (5.19), would lead to sizable effects

even at low energies.34 On the other hand, the experimental constraints on these effects

are extremely tight [10]. One arrives to the conclusion that breaking of Lorentz symmetry

33Terms with odd powers of momentum can be forbidden by imposing the CPT invariance. In partic-

ular, this allows to avoid bounds from the absence of vacuum birefringence discussed in [8, 9]. It is also

worth mentioning that modification of dispersion relation of the matter fields at high momenta is strongly

suppressed in supersymmetric Lorentz-violating extensions of the Standard Model [45, 46].
34It is worth stressing that without additional assumptions the khronon-matter couplings generically

would be non-universal, i.e. species-dependent, implying, in particular, violation of the weak equivalence

principle.
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in the matter sector at the level of dimension 3 and 4 operators must be highly suppressed.

For some of the couplings this may be achieved by imposing discrete symmetries. For

example, the first operator listed in (5.19) can be forbidden by requiring CPT invariance.

However, a stronger mechanism is needed to suppress all dimension 3 and 4 operators.

We will mention one possibility in the discussion section. For the moment let us just

assume that such a mechanism exists. Then to the leading approximation the coupling of

the khronon field to matter at the lowest-derivative level must be encoded in a universal

effective metric

g̃µν = gµν − βuµuν , (5.22)

where β is a dimensionless constant. Clearly, this kind of coupling preserves Lorentz

invariance of the matter sector. We concentrate on this type of coupling in what follows.

5.3 Velocity-dependent forces and instantaneous interaction

Before engaging into a systematic analysis of the observational constraints on the univer-

sally coupled khronon let us make some preliminary estimates of the type of effects induced

by the coupling (5.22). When β is small one expands the interaction terms and obtains to

leading order in β

Sχ-mat =
β

2

∫

d4x
√−g uµuνTµν ,

where Tµν is the matter energy-momentum tensor. Expanding the khronon field as usual,

ϕ = t+ χ, one obtains the action for small perturbations including the source term

∫

d4x

[

M2
0

2

(

α(∂iχ̇)
2 − (λ− 1)(∆χ)2

)

− βχ∂iT
0i

]

.

From this expression we read off the khronon exchange amplitude between two sources

with energy-momentum tensors Tµν
(1) and Tµν

(2) ,

Aχ = − β2

M2
0

T 0i
(1)

∂i∂j
∆

1

α∂20 − (λ− 1)∆
T 0j
(2) . (5.23)

This amplitude does not encapsulate all the new interactions due to the presence of the

khronon field. In the systematic treatment eq. (5.23) must be supplemented by the ampli-

tudes involving khronon-graviton mixing and by the contributions coming from the mod-

ification of the metric propagator due to the Lorentz symmetry breaking. This will be

done in the next section within the formalism of the parameterized post-Newtonian (PPN)

expansion. Here we note that the direct khronon exchange (5.23) dominates over other

effects in the case

α ∼ |λ− 1| ≪ β . (5.24)

The simplicity of the amplitude (5.23) makes the analysis in this case much more trans-

parent than in the full PPN treatment. Thus we first concentrate on the case (5.24).

Let us consider the khronon-induced interaction for two point-like non-relativistic

sources. In this case T 0i
(a) = mav

i
aδ(x − xa), where xa, va, a = 1, 2 are the coordinates

and velocities of the two particles. In the non-relativistic regime one can neglect the time
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derivatives in the khronon propagator. After integration over spatial coordinates one ob-

tains from (5.23) the following contribution into the two-particle Lagrangian,

Lχ =
m1m2

8πM2
0

β2

λ− 1

v1 · v2 − (v1 · r̂)(v2 · r̂)
r

, (5.25)

where r = x1−x2 and r̂ = r/r. This interaction is quite peculiar: it depends simultaneously

on the distance between the particles and on their velocities with respect to the preferred

frame. Note that due the velocity dependence this term contributes non-trivially into the

expressions for the conserved energy and momentum of the system.

An interesting special case of eq. (5.25) corresponds to the situation when one of the

particles (say, particle 2) is much heavier than the other so that its velocity is approximately

conserved (like, e.g., in the Sun-Earth system). One can show that in this case (5.25)

reduces to

Lχ =
m1m2

8πM2
0

β2

λ− 1

v2
2 − (v2 · r̂)2

r
, (5.26)

up to a total time-derivative. We observe that the dependence on the test particle velocity

has dropped out. Equation (5.26) has a simple interpretation as a direction-dependent

contribution into the gravitational potential produced by the heavy source. In the next

section we will discuss the phenomenological constraints on this type of contributions within

the PPN framework.

An important remark is in order. The form of the khronon exchange amplitude (5.23)

makes it manifest that the model involves instantaneous interaction. This is due to the

factor ∆−1 in the khronon propagator. This factor may cancel out in some special cases

when the sources contain sufficient number of spatial derivatives, but not in general. Ap-

pearance of instantaneous interactions is a common feature of modified gravity models

(more generally, gauge theories) with broken Lorentz invariance [20, 54–56]. In a theory

that does not aspire to a Lorentz invariant UV completion this does not pose an obvious

obstruction. In particular, it certainly does not imply any problems with causality which

is defined with respect to the preferred time slicing. Instantaneous interactions do intro-

duce a kind of non-locality since far-away sources may affect the immediate future in any

given local domain. However, the strength of the non-local effects seems to decay with

distance and is suppressed both by post-Newtonian factors of v2 and the (small) model

parameters. Hence, it is not obvious if the presence of the instantaneous interaction leads

to any significant constraints on the model. A more detailed investigation of related issues

(the possibility to have any direct observational limits on instantaneous interactions, the

implications for BH physics, etc.) is left for future.

5.4 Universal coupling and post-Newtonian parameterization

In the universally coupled case the effects of the khronon field are naturally interpreted as

modification of the (universal) gravitational interaction between matter particles. The size

of allowed effects is constrained by the existing tests of GR [39]. So we now turn to the

bounds that the model has to satisfy in order to pass these tests.
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The khronon sector is completely described by three parameters: (λ − 1), α in the

action (5.9) and β in the effective metric (5.22). It is convenient to make a field redefinition

by trading the “Einstein-frame” metric gµν in favor of the effective metric g̃µν to which

matter couples minimally. The result of this redefinition is readily obtained if we assume

the parameters (λ−1), α, β to be much smaller than one; we will see that this assumption

is justified by the phenomenological bounds which indeed require the above parameters to

be small. Then to the leading order we write

√−g (4)R =
√

−g̃ (4)R̃−
√

−g̃
(

(4)R̃µν −
1

2
g̃µν

(4)R̃

)

βũµũν .

Using the identity
∫

d4x
√

−g̃ (4)R̃µν ũ
µũν =

∫

d4x
√

−g̃
(

(∇µũ
µ)2 −∇µũν∇ν ũµ

)

one obtains the action

S = −M
′
0
2

2

∫

d4x
√−g

{

(4)R+ β∇µuν∇νuµ + λ′(∇µu
µ)2 + αuµuν∇µu

ρ∇νuρ

}

, (5.27)

where

M ′
0
2
=M2

0

(

1 +
β

2

)

, λ′ = λ− 1− β (5.28)

and we have omitted tildes over the new variables (we will always work with the redefined

metric in the rest of this section so this will not lead to confusion). Note that the appearance

of the new parameter β in the khronon action (5.27) can be traced back to the presence

of the parameter ξ in front of the 3-dimensional scalar curvature in the unitary-gauge

potential, see (2.6), (2.4). In the pure gravity theory this parameter does not have physical

meaning as it can be eliminated, say, by a rescaling of the time coordinate, cf. the discussion

after eq. (2.4). This is no longer true in the presence of matter: as we are going to see

physical observables depend on the value of β.

As already mentioned before, the action (5.27) has the same form as the action of

the Einstein-aether theory [31] which has been extensively studied as a phenomenological

model for violation of Lorentz invariance [32]. The difference of our model from Einstein-

aether is that in our case the aether vector uµ is by construction hypersurface-orthogonal.

As a consequence, in our case aether propagates a single longitudinal degree of freedom

(khronon), while in general there are additional transverse modes. This implies that the

results about Einstein-aether theory that are insensitive to the presence of transverse modes

are also valid for our model.35

35The relation with Einstein-aether can also be used to derive the result of metric redefinition (5.22) in the

general case when the parameters (λ−1), α, β are not small. In Einstein-aether the substitution (5.22) leads

to the change of the coefficients in the aether Lagrangian; the corresponding formulas have been worked out

in [57]. The most general Einstein-aether action contains an additional term ∇µuν∇µuν compared to (5.27).

In our case when the aether vector uµ is hypersurface-orthogonal the four terms in the aether action are

not independent [35] implying that the term ∇µuν∇µuν can be eliminated. In this way one arrives at the

action (5.27) with

M ′

0

2
=

M2

0√
1− β

, λ′ = (1− β)(λ− 1)− β ,

which coincides with (5.28) for β ≪ 1.
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The first set of constraints obtained in this way is related to the fact that the velocities

of the modes propagated by the action (5.27) are in general different from 1, the maximal

velocity of matter. Using the formulas for the Einstein-aether theory [32] we obtain to first

non-trivial order in parameters the velocity of helicity-2 modes (graviton):

c2g = 1 + β , (5.29a)

and that of the helicity-0 mode (khronon):

c2χ =
λ′ + β

α
. (5.29b)

Note that (5.29b) coincides with the velocity entering the dispersion relation (5.11). If the

velocities of graviton or khronon are smaller than 1 relativistic matter particles will quickly

loose their energy via vacuum Cherenkov radiation [58]. This is strongly contrained by the

existence of high-energy cosmic rays. Thus we conclude that the graviton and khronon

velocities must be larger or equal to 1 which yields the bounds

β ≥ 0 ,
λ′ + β

α
≥ 1 .

Another constraint is obtained from the comparison of the gravitational constants

appearing in the Newton law and the Friedmann equation governing the cosmological

expansion. Again, the transverse aether modes do not play any role in these considerations,

so we can directly apply the results from the Einstein-aether theory to our case. The

Newton constant, which is defined as the coefficient in the Newton law for the gravitational

force between two static masses, is related to the parameters appearing in the action (5.27)

as follows [32]:

GN =
1

8πM ′
0
2(1− α/2)

. (5.30)

On the other hand, the cosmological expansion in the Einstein-aether theory is described

by the standard Friedmann equation,

H2 =
8π

3
Gcosm ρ , (5.31)

where H is the Hubble rate, ρ — the energy density of the Universe, but with a different

proportionality coefficient36 [32],

Gcosm =
1

8πM ′
0
2(1 + 3λ′/2 + β/2)

. (5.32)

The discrepancy between GN and Gcosm is constrained by Big Bang nucleosynthesis [59],

∣

∣

∣

∣

Gcosm

GN
− 1

∣

∣

∣

∣

≤ 0.13 .

36The expressions (5.30), (5.32) for the case β = 0 were derived directly from the action (2.5) in [26].
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Barring accidental cancellations, this yields an order-of-magnitude bound on the parame-

ters of the model,

α, β, λ′ . 0.1 .

Stringent limits on any alternative theory of gravity come from the observational con-

straints on the parameters of the parameterized post-Newtonian (PPN) formalism. Re-

markably, in the Einstein-aether theory all PPN parameters except two are the same as in

GR [60]. The non-trivial parameters are called αPPN
1 , αPPN

2 and describe preferred frame

effects related to breaking of Lorentz symmetry. We now argue that in the khrono-metric

theory (5.27) all PPN parameters except αPPN
1 , αPPN

2 are the same as in Einstein-aether.

Indeed, besides αPPN
1 , αPPN

2 and the parameters which vanish automatically in any theory

described by a Lagrangian, there are three more PPN parameters: βPPN, γPPN and ξPPN.

The key point is that these three are determined from spherically symmetric solutions which

are identical in the khrono-metric and Einstein-aether theories, see appendix D. Thus in

the khrono-metric model at hand these parameters have the same values as in GR,

βPPN = γPPN = 1 , ξPPN = 0 .

One cannot use the results for Einstein-aether in the case of the parameters αPPN
1 ,

αPPN
2 : they describe effects related to the motion of the source with respect to the pre-

ferred frame and are contaminated in Einstein-aether by the contributions of the transverse

aether modes. These parameters can be defined as the coefficients in the linearized metric

produced by a point source of mass m in its rest frame [61]:

h00 = −2GN
m

r

(

1− (αPPN
1 − αPPN

2 )v2

2
− αPPN

2

2

(xivi)2

r2

)

(5.33a)

h0i =
αPPN
1

2
GN

m

r
vi , (5.33b)

hij = −2GN
m

r
δij , (5.33c)

where r is the distance from the source and vi is the velocity of the source with respect to

the preferred frame. Note that the contribution proportional to αPPN
2 has the form of the

direction-dependent gravitational potential encountered in section 5.3. The current Solar

system limits on these parameters are [39]:

|αPPN
1 | . 10−4 , |αPPN

2 | . 10−7 .

The derivation of αPPN
1 , αPPN

2 for the model (5.27) in the case α, β, λ′ ≪ 1 is given in

appendix E; the result is

αPPN
1 = −4(α− 2β) , αPPN

2 =
(α− 2β)(α− λ′ − 3β)

2(λ′ + β)
. (5.34)

Note that both parameters vanish if α− 2β = 0. Another interesting case is β = 0, λ′ = α;

this corresponds to the situation when the velocities of all modes in the theory are equal

to 1, see eqs. (5.29). In this case the parameter αPPN
2 which is most tightly constrained
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vanishes. Barring these special cases and assuming α, β, λ′ to be of the same order we

obtain the bound

α , β , λ′ . 10−7 ÷ 10−6 . (5.35)

To the best of our knowledge, this is the strongest constraint on the parameters of the

model that can be obtained at present.

As discussed in section 5.1, the bound (5.35) combined with the requirement that the

theory is weakly coupled implies the upper limit (5.17) on the scale suppressing higher-order

operators in the gravitational action.

6 Summary and discussion

In this paper we have investigated the self-consistency issues related to the scalar graviton

modes in Hořava’s approach to quantum gravity. We have considered three models of

non-relativistic gravity differing by the symmetry group and the requirement or not of the

projectability condition. In our study we extensively used the Stückelberg formalism which

makes the scalar modes explicit by encoding them into the khronon field: a scalar field

with time-dependent VEV. This facilitates a lot the analysis of the scalar mode dynamics.

In two of the considered models (the projectable version of the original proposal [1]

and a possible extension based on a smaller symmetry group), the scalar modes were found

to destabilize the Minkowski space-time. This constitutes a serious problem for the appli-

cations of these models as alternatives to GR for the description of the four-dimensional

world. Attempts to suppress the instabilities by tuning the model parameters result in

strong coupling of the scalar modes undermining the perturbative analysis. In particular,

the naive power-counting argument for renormalizability of the models is invalidated.

Let us recapitulate. While it is relatively easy to make the scalar modes well-behaved

in the UV, this is much harder to achieve in the IR. The scalar gravitons tend to develop

gradient instabilities which can be suppressed only by pushing the model parameters to

extreme values. This, in turn, introduces strong coupling. Thus the primary goal in

constructing a consistent non-relativistic gravity model is to stabilize the scalar modes.37

The analysis of section 4 teaches us that reducing the symmetry to a smaller group

than the FDiffs does not give any advantage in achieving this goal. Though this approach

allows to improve the behavior of the scalar graviton of the projectable Hořava’s model,

it introduces yet other scalar modes which bring the pathologies back. Even relaxing

the symmetry to the RFDiffs, that have as many local generators as the FDiffs, turns

out to have the quite dramatic consequence of allowing for new operators that lead to

tachyonic ghosts and therefore fast instabilities. Even if not present at tree level these

37An alternative route, briefly outlined in section 3.1, would be to look for a ground state with curved

geometry which could be the endpoint of the decay of the Minkowski vacuum. To reconcile the predictions

of the model in this approach with the fact that the Universe is observed to be smooth and nearly flat

one must appeal for the picture where the observed space-time is composed of many patches of the curved

ground state with different orientations, so that the net curvature at large scales is small. Clearly, to see if

this scenario can be realized requires a thorough investigation of the non-linear dynamics of non-relativistic

gravity, which we leave for future research.
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operators would be generated by quantum effects. From this we conclude that the time-

reparameterization symmetry contained in the FDiffs plays the quite important role of

preventing the appearance of tachyonic ghosts in the model.

The scalar mode is stable and also free from other pathologies in the third model

which we analyzed, the so called “healthy extension”. The latter is nothing but the cor-

rect implementation of the original Hořava’s proposal for the non-projectable case. It is

obtained by including into the action all terms compatible with invariance under FDiffs

and renormalizability by power counting. For appropriate choice of parameters the unique

propagating scalar mode possesses stable dispersion relation in the entire range of spatial

momenta. Moreover, the dispersion relation has nice properties both at low and high mo-

menta. In the first case it is linear, ω2 ∝ p2, implying that the mode remains stable in

any sufficiently smooth background.38 On the other hand, the asymptotic form ω2 ∝ p6

of the dispersion at high momenta is compatible with the anisotropic scaling postulated in

the UV. Therefore, the presence of this mode does not spoil the power-counting arguments

which strongly suggest that the model is renormalizable. This implies, in particular, that

strong coupling is avoided in the model by construction provided the coupling constants

are chosen small enough.

Encouraged by these results we studied some phenomenological aspects of the healthy

model. Making use of the Stückelberg formalism we have demonstrated that at low energies

the theory reduces to GR interacting with an additional scalar field — the khronon. The

time-dependent VEV of the khronon field breaks Lorentz invariance down to arbitrarily

low energies. We observed that the structure of the low-energy limit of the model is similar

to that of the Einstein-aether theory [31, 32], even though the two theories are not exactly

equivalent. The difference is due to transverse modes present in the Einstein-aether theory

and absent in the healthy model of this paper. The transverse modes do not affect the

form of homogeneous isotropic cosmological solutions and of spherically symmetric solu-

tions. This allowed us to directly apply to our case the bounds on Einstein-aether theory

coming from the expansion history of the Universe, as well as to conclude that all but two

PPN parameters in the healthy model coincide with those of GR. We have calculated the

values of the remaining two PPN parameters, αPPN
1 , αPPN

2 , which characterize preferred

frame effects. Current observational bounds on αPPN
1 , αPPN

2 significantly constrain the

parameter space of the healthy model (but do not rule it out). Combined with the require-

ment that the theory is weakly coupled these bounds translate into the upper bound on the

scale of quantum gravity M∗ . 1015 ÷ 1016GeV. Within the simplifying assumption that

M∗ coincides with the scale of Lorentz symmetry breaking in the matter sector, astropar-

ticle data constrain it from below: M∗ & 1010 ÷ 1011GeV. [We stress though that this

lower bound must be taken cautiously: its validity depends on the details of the matter

sector.] The net result of our phenomenological study is that the healthy model can be

tested experimentally using existing techniques, which we believe makes this model quite

attractive.

38More precisely, in any background sufficiently close to Minkowski space-time equipped with the foliation

by surfaces t = const.
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The above results suggest that the healthy model of this paper can serve as a starting

point for construction of a viable renormalizable theory of gravity. Admittedly, a lot of

open issues remain. Let us discuss some of them.

The renormalizability of the model is yet to be demonstrated beyond power counting.

In principle, this amounts to an explicit analysis of the loop corrections to the action of

the form (2.5), (2.6). In practice though, this may turn out to be a formidable task, given

the large (of order 100) number of allowed terms in the Lagrangian and the complications

related to the gauge symmetry of the action under FDiffs. A particularly subtle issue is a

proper treatment of the time-reparameterization invariance. For consistency of the model

this symmetry must be free of anomalies. Otherwise the symmetry would be reduced to

that of the model of section 4, with the corresponding re-appearance of pathologies. An

interesting development along these lines is the renormalization of the energy-momentum

tensor of test fields in curved backgrounds in Hořava-type theories [62]. It is shown that,

in contrast to the relativistic case, this does not require counterterms with more than two

time derivatives.

Even if the model proves to be renormalizable, there will be a question if it is UV-

complete or not. In other words, if it possesses a weakly coupled UV fixed point. An

answer to this question requires the study of the renormalization group (RG) flow of the

theory. Let us mention in this connection interesting recent results [63] about quantum

electrodynamics (QED) in five space-time dimensions. It is demonstrated that 5d QED

can be UV completed within Lorentz-violating framework by adding operators with higher

spatial derivatives. The resulting theory is weakly coupled at all energies, possesses a

weakly coupled UV fixed point with anisotropic scaling exponent z = 2 and flows to

the usual 5d QED in IR (though, in general, with different velocities of photons and

electrons).

It will be interesting to assess the quantum properties of the healthy model beyond

perturbation theory. A possible approach to this difficult problem would be to use the

canonical formalism. It is worth noting that the inclusion of the terms with derivatives

of the lapse N into the potential (2.6) significantly improves the canonical structure of

the theory compared to the version of the model considered in [24, 25]. Indeed, due to

these terms the lapse is no longer a Lagrange multiplier and the analysis [24, 25] unveiling

the pathological structure of the constraints in the original Hořava model does not apply.

Instead, in the model of this paper the Hamiltonian constraint obtained as the variation

of the action with respect to the lapse, H ≡ δS
δN = 0, has non-vanishing Poisson bracket

with the equation πN = 0, where πN is the canonically conjugate momentum for N . In

other words, these two constraints form a second class pair and must be used to eliminate

the variables N , πN from the phase space [26, 43]. Presence of second class constraints

is an interesting feature of the model and its implications both for classical and quantum

dynamics of the theory deserve a detailed study.

The non-perturbative dynamics of the model can be also addressed semiclassically

by developing perturbative expansion in the backgrounds of classical non-linear solutions.

Clearly, the first step here is to find explicitly such solutions. Let us point out in this context
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the existence of cosmological solutions which are free from the initial singularities39 [64–

66]. It will be interesting to understand if these solutions are stable, the study of this issue

has been initiated in [67]. Another important issue is the structure of black hole solutions

in the healthy model. Given that the high frequency modes in this model propagate

with arbitrarily high velocities (moreover, as discussed in section 5.3, the theory involves

instantaneous interactions), it is a priori unclear if the notion of black hole as a region of

space surrounded by an event horizon makes sense. On the other hand, there certainly

must exist some low-energy notion of horizon defined using low-frequency modes which

have finite velocity. It will be interesting to understand the physical meaning of black

hole entropy associated to this low-energy horizon. The situation is even more intriguing

because generically, due to the violation of Lorentz invariance, different low-energy species

will propagate with different velocities thus giving rise to a number of nested horizons. As

discussed in [68, 69] one would expect this to lead to break down of the second law of black

hole thermodynamics. This, in turn, suggests on general grounds violation of unitarity,

see e.g. [70]. Thus it is vital for the proposal to understand if and how this paradox is

resolved. It is worth mentioning that some spherically symmetric solutions of the healthy

model have been reported in [71].

From the phenomenological perspective the major challenge for the non-relativistic

gravity framework is a mechanism for emergence of Lorentz invariance in the matter sector

at low energies. As discussed above this must happen with very high accuracy to satisfy

existing experimental bounds. This poses a severe fine-tuning problem which is aggra-

vated by the fact that Lorentz-violating parameters, such as differences of velocities of

various matter species, run with the energy scale [72, 73]. A promising mechanism to avoid

fine-tuning is related to supersymmetry. Indeed, it has been argued [45, 46] that within

Lorentz-violating extensions of the Minimal Supersymmetric Standard Model (MSSM) it

is impossible to write any Lorentz-violating operator of dimension less than 5. Dimension

5 Lorentz-breaking operators can be further forbidden by imposing discrete symmetries,

e.g. CPT; in this case Lorentz breaking starts at dimension 6. In other words, given su-

persymmetry, Lorentz invariance emerges as an accidental low-energy symmetry. Eventual

supersymmetry breaking gives rise to Lorentz-violating effects, but these are suppressed

by the small ratio of the soft supersymmetry breaking masses msoft to the scale M∗ of

the higher-order Lorentz-violating operators. For example, the coefficients of dimension-4

Lorentz-violating operators generated from the operators of dimension 6 upon supersym-

metry breaking are of order (msoft/M∗)
2. These are comfortably within the experimental

bounds for msoft ∼ 1TeV, M∗ ∼ 1015GeV. Interestingly, supersymmetry also suppresses

the contributions with higher powers of momentum in the dispersion relations of matter

particles [45, 46] which weakens significantly the lower limits onM∗ coming from astrophys-

ical observations. Needless to say, realization of this scenario for the emergence of Lorentz

39These solutions were obtained in the context of the reduced version of the Hořava’s proposal which

suffers from the pathological behavior of the extra mode. However, the terms which were added to the

original Lagrangian to obtain the healthy model vanish on spatially homogeneous configurations (they

contain spatial gradients of the lapse). Thus the cosmological solutions of the reduced model are also

solutions of the healthy model of the present paper.
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invariance requires supersymmetrizing the non-relativistic gravitational action (2.5), (2.6).

The first step in this direction would be to supersymmetrize the low-energy limit of this

action, eq. (5.27). This essentially amounts to constructing a supersymmetric action for

the khronon sector as the gravitational part coincides with GR and can be made super-

symmetric in the standard way.

The present work makes only first steps in the study of observational consequences of

the healthy model. Many topics which have not been touched in this paper deserve a thor-

ough investigation. These include implications of the model for emission and propagation

of gravitational waves, dynamics of binary pulsars, spectrum of CMB perturbations and

structure formation. Interesting results about the dynamics of the cosmological perturba-

tions in the healthy model were reported recently in [74, 75].

We plan to return to some of the above questions in future.

Note added. When this paper was in preparation the article [76] appeared which also

uses the Stückelberg formalism to study the properties of the healthy model. Where there

is an overlap, our results agree. However, ref. [76] pushes the analysis using the decoupling

limit to the regime of high energies (higher than M∗) and argues that the terms with the

higher spatial derivatives do not resolve strong coupling of the scalar mode. This seems

to contradict the conclusions of the present paper. However, pushing the decoupling limit

to high energies, as done in [76], corresponds to going beyond its range of applicability.

Indeed, the limit considered in [76] implies throwing away all the higher-derivative mixings

between the khronon field and the metric. On the other hand, as admitted in the published

version of the [76], these terms are crucial to ensure the correct UV behavior ω2 ∝ p6 of

the dispersion relation of the scalar mode, required by the anisotropic scaling with z = 3

and satisfied in the full theory, see eq. (5.5). Instead, for the decoupling limit considered

in [76] the UV asymptotic of the dispersion relation for the khronon field is ω2 = const.

Thus the loop integrals over spatial momenta instead of being suppressed become even

more divergent than in the relativistic case. Clearly, this only represents a failure of the

limit considered in [76] and does not imply the inconsistency of the theory.
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A Proof of the no ghost theorem

In this appendix we prove the proposition formulated at the end of section 2.2. For simplic-

ity, let us first consider the case when the Lagrangian depends only on the normal vector uµ
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and its first derivatives. These derivatives enter into the Lagrangian through the extrinsic

curvature Kµν and the acceleration vector aµ,

L = L(uµ,Kµν , a
µ) .

This case covers all terms in the general Hořava-type Lagrangian (2.5) except those involv-

ing spatial derivatives of the 3-dimensional tensor Rij or of the acceleration ai.

We start by expanding uµ up to quadratic order,

uµ = ūµ + δ(1)uµ +
1

2
δ(2)uµ ,

where

δ(1)uµ =
1√
X̄
P̄ ν
µ∂νχ , (A.1)

δ(2)uµ = − 1

X̄
ūµ(P̄

νλ∂λχ)
2 − 2

X̄
P̄ λ
µ ∂λχ ū

ν∂νχ . (A.2)

Here bar refers to the background values of the fields. The crucial observation is that in

the background (2.20) the first variation (A.1) of the normal vector does not contain time

derivatives of χ, while the second variation (A.2) contains only first time derivative. The

next step is to consider variations of the extrinsic curvature and acceleration

δ(1)Kµν = δ(1)P λ
µ ∇λūν + P̄ λ

µ ∇λδ
(1)uν ,

δ(1)aµ = δ(1)uλ∇λūµ + ūλ∇λδ
(1)uµ ,

δ(2)Kµν = 2δ(1)P λ
µ ∇λδ

(1)uν + δ(2)P λ
µ ∇λūν + P̄ λ

µ ∇λδ
(2)uν ,

δ(2)aµ = 2δ(1)uλ∇λδ
(1)uµ + δ(2)uλ∇λūµ + ūλ∇λδ

(2)uµ .

One observes that in the background (2.20) δ(1)Kµν does not contain time derivatives of

χ; δ(1)aµ, δ
(2)Kµν contain one time derivative, and δ(2)aµ — two time derivatives. The

quadratic Lagrangian consists of two types of terms: the terms containing the first vari-

ations of the fields squared, and the terms linear in the second variations. For example,

writing down explicitly the terms with the variation of the acceleration we obtain

L(2) =
1

2

∂2L
∂aµ∂aν

δ(1)aµ δ
(1)aν +

1

2

∂L
∂aµ

δ(2)aµ + . . . .

Clearly, both these terms contain at most two time derivatives of χ. In the case when ϕ̄

does not satisfy the equations of motion one has to consider also the linear variation of the

Lagrangian L(1). Using the same reasoning as before one concludes that L(1) contains at

most first time derivative of χ. This completes the proof.

It is straightforward to generalize the above proof to include the dependence of the La-

grangian on higher spatial derivatives. In covariant language a spatial derivative translates

into the operator P ◦ ∇ ◦ P , which is purely spatial (i.e. does not introduce further time

derivatives). For example, the object ∇iaj takes the covariant form P λ
µ∇λ(P

ρ
ν aρ). Using

the same reasoning as before one can show that the first (second) variation of this type of

objects contain at most one (two) time derivatives of χ.
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Note that the above proof uses in an essential way the invariance of the action under

the transformations (2.15): this forces the Lagrangian to depend on the khronon field only

via uµ and its derivatives. Recall that this invariance stems from the invariance of the

original action (2.5) under FDiffs. As a consequence the proof also goes through for the

projectable model (2.2) which obeys this symmetry. Indeed, as pointed out in section 2.1,

the projectable model is recovered from the theory (2.5), (2.6) by taking the limit α→ ∞.

Thus the order of time derivatives in the covariant equations for these two theories coincide.

On the other hand, the proof does not apply to models with reduced symmetry, such

as the theory (2.7), because in these cases the Lagrangian contains additional dependence

on the ϕ gradients. We argue in section 4 that this makes the equation of motion for the

khronon fourth-order in time; as one could anticipate, this leads to certain pathologies of

the theory.

B Two faces of the tachyonic ghost

The purpose of this appendix is to clarify the following puzzle. In section 4 we have shown

using the Stückelberg formalism that the RFDiff model includes in its spectrum a tachyonic

ghost. On the other hand, in the unitary gauge the action (2.7) of the model contains only

two time derivatives and according to the standard lore one would not expect any ghosts

in this picture. This seems to contradict the results of the Stückelberg analysis. We are

going to show that the contradiction is removed when one properly formulates the physical

questions to assess the effects of the tachyonic ghost.

We start by writing the Lagrangian for the sector of scalar perturbations in the uni-

tary gauge around Minkowski background. Substituting the decomposition (2.9) in the

action (2.7) and integrating out the non-dynamical fields B and E one obtains

L(2)
III =

M2
0

2

[

4M2
0

M2
λ

ψ̇2 − 2ψ∆ψ + 4φ∆ψ

]

+
M2

α

2
(∂iφ)

2+
M2

λ1

2
φ̇2+M4φ2

− M2
0

2

[

f1
M2

∗

(∆ψ)2+
2f2
M2

∗

∆φ∆ψ+
f3
M2

∗

(∆φ)2+
g1
M4

∗

ψ∆3ψ+
2g2
M4

∗

φ∆3ψ+
g3
M4

∗

φ∆3φ

]

,

(B.1)

where Mλ, Mλ1
, Mα are defined in (2.10) and M4 is the coefficient appearing in the

expansion of the potential V (N) in (2.8) to quadratic order in φ; these parameters have

the same meaning as in the Stückelberg action (4.5). In deriving (B.1) we assumed for

simplicityMλ ≪M0 (this is the case relevant for comparison with the Stückelberg analysis).

Finally, the constants fn, gn are related to the coefficients of the higher-derivative terms

in the potential (2.8). The Lagrangian (B.1) clearly describes two propagating degrees

of freedom which matches with the Stückelberg analysis of section 4. What seems to

be different is that the kinetic energy of both modes can be made positive by choosing

Mλ, Mλ1
> 0, while in the khronon language one of the modes is a ghost. This said, let

us proceed and find the dispersion relation for the modes. Neglecting the higher-derivative
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terms we obtain,

ω2 = −
[

M4

M2
λ1

+

(

M2
α

2M2
λ1

+
M2

λ

4M2
0

)

p2

]

±
√

[

M4

M2
λ1

+

(

M2
α

2M2
λ1

+
M2

λ

4M2
0

)

p2

]2

+
M2

λp
4

M2
λ1

− M4M2
λp

2

M2
0M

2
λ1

.

(B.2)

Clearly one of the modes exhibits gradient instability. In the decoupling limit M0 → ∞
the dispersion relations (B.2) coincide with the expressions (4.6) of section 4. Thus at the

level of the dispersion relations the unitary gauge and the Stückelberg descriptions match.

Let us now ask if there is any physical setup where one could distinguish between a

mode with gradient instability (simple tachyon) and a mode which besides the gradient

instability also has a negative kinetic term (tachyonic ghost). The standard definition of

the ghost as “a field whose Hamiltonian is not positive definite” is not very useful: the

Hamiltonian is not sign-definite in both cases. Moreover, the two cases can be related by a

canonical transformation. To illustrate this point consider a toy Lagrangian representing

a single Fourier mode of a tachyonic ghost,

Lghost = − η̇
2

2
− p2η2

2
. (B.3)

The corresponding Hamiltonian reads

Hghost = −π
2

2
+
p2η2

2
,

where π is the canonically conjugate momentum for η. The canonical transformation

π̃ = pη , η̃ = −π/p

casts this into the Hamiltonian of a simple tachyon,

Htachyon =
π̃2

2
− p2η̃2

2
.

One may still try to distinguish if a mode is ghost or not by the sign of the residue at

the pole in the one-particle exchange amplitude considered as function of ω2; this must be

negative for the mode to qualify as a ghost. However, in the case of the tachyonic ghost the

sign depends on the type of coupling to the source used to define the amplitude. Taking

again the toy model (B.3) as an example consider two couplings:

L(1)
source = ηΣ1 and L(2)

source = η̇Σ2 .

In the first case the one-particle exchange amplitude reads

AΣ1
∝ Σ1

−1

ω2 + p2
Σ1

and the residue is negative. However, in the second case

AΣ2
∝ Σ2

−ω2

ω2 + p2
Σ2
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and the residue becomes positive: at the pole, −ω2 = p2 > 0. Note that this ambiguity

is related to the instability of the mode; it is absent for the case of a ghost with a stable

dispersion relation when the pole lies at positive ω2. Thus we conclude that for a mode

with gradient instability there is no unambiguous way to tell if it is a ghost or not. Rather,

this notion makes sense only for a given coupling of the mode to the source.

It is instructive to trace explicitly the agreement of one-khronon exchange amplitudes

calculated in the Stückelberg and unitary gauge pictures. To this aim we need to specify

the source. This is easier to do on the Stückelberg side where we couple the khronon to a

scalar field Σ. The khronon field must enter with derivatives so we write,

Ssource =

∫

d4x
√−g gµν∂µϕ∂νΣ . (B.4)

In terms of the khronon perturbations this takes the form

Ssource =

∫

d4x (−χ̈+∆χ) Σ .

From this expression and the quadratic action (4.5) one reads off the khronon exchange

amplitude

AΣ ∝ Σ
(ω2 − p2)2

D
Σ , (B.5)

where

D =M2
λ1
ω4 +M2

αω
2p2 −M2

λp
4 + 2M4ω2 .

One observes that this amplitude is a sum of two contributions, with positive and negative

residues at the poles. In this sense one of the khronon modes is indeed a ghost.

Let us now see how the same amplitude is recovered in the unitary gauge. Fixing ϕ = t

and substituting the decomposition (2.9) into the source term (B.4) we obtain

Ssource =

∫

d4x (−φ̇+ 2ψ̇ + Ė +
√
∆B) Σ .

The next step is to integrate out the non-dynamical fields B, E. Importantly, this produces

a contribution into the Lagrangian which is quadratic in Σ. Omitting the higher-derivative

terms in (B.1), the resulting Lagrangian reads

L(2)
III =

M2
λ

2
˙̃
ψ2 +M2

λφ∆ψ̃ +
M2

α

2
(∂iφ)

2 +
M2

λ1

2
φ̇2 +M4φ2 −

(

φ̇+
˙̃
ψ
)

Σ+
Σ2

2M2
λ

,

where for simplicity we have taken the limit M0 → ∞ (this corresponds to the decoupling

limit in the Stückelberg picture) and introduced the rescaled variable

ψ̃ = (2M2
0 /M

2
λ)ψ .

This Lagrangian leads to the following propagators:

〈φφ〉 = ω2

D
, 〈φ ψ̃〉 = −p2

D
,

〈ψ̃ ψ̃〉 =
M2

λ1
ω2 +M2

αp
2 + 2M4

M2
λ D

.
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Finally, the khronon exchange amplitude reads,

AΣ ∝ Σ
(

ω2(〈φφ〉+ 2〈φ ψ̃〉+ 〈ψ̃ ψ̃〉)−M−2
λ

)

Σ .

Combining everything together one obtains the result (B.5). Thus we find that the unitary

gauge calculation leads (in a quite non-trivial way) to the same result as in the Stückelberg

formalism, as, of course, it should be. Technically, in the unitary gauge the ghost pole

appears due to the structure of the coupling to the source.

C Stability bounds for the healthy model

Here we present conditions on the parameters of the healthy model of section 5 imposed by

requiring the stability of the scalar mode. We formulate them in terms of the coefficients

α, fn, gn appearing in the quadratic Lagrangian (5.1).

The stability requirement is expressed by eq. (5.6) with the polynomials P (x) and

Q(x) defined in (5.3), (5.4). This implies the following necessary conditions:

g22 − g1g3 > 0 , 2− α > 0 ,

g3 > 0 , α > 0 , f3 < 2
√
α g3 . (C.1)

Deriving the full set of necessary and sufficient conditions is quite cumbersome. Instead

we provide two different sets of sufficient conditions. The first possibility is requiring that

all the monomials in P (x) are positive definite. Apart from the previous conditions (C.1)

this yields the constraints

g1f3 + g3f1 − 2g2f2 > 0 ,

f22 − 4g2 − f1f3 − 2g3 − αg1 > 0 , (C.2)

2f3 + αf1 + 4f2 > 0 .

Another option is to write P (x) as

P (x) =
(

(g22 − g1g3)
1/4x+ (4− 2α)1/4

)4
− x
(

c2x
2 − c1x+ c0

)

,

and require the quadratic polynomial inside the last bracket to be positive at x < 0. This

translates into the constraints

c2 > 0 , c1 > −2
√
c0c2 , c0 > 0 , (C.3)

where

c2 = f3g1 + f1g3 − 2f2g2 + 4(g22 − g1g3)
3/4(4− 2α)1/4 ,

c1 = f22 − 4g2 − f1f3 − 2g3 − g1α− 6(g22 − g1g3)
1/2(4− 2α)1/2 ,

c0 = 2f3 + 4f2 + f1α+ 4(g22 − g1g3)
1/4(4− 2α)3/4 .

Note that the two sets of bounds (C.2) and (C.3) overlap but none of them contains the

other.

– 43 –



p
r
o
o
f
s
 
J
H
E
P
_
1
0
4
P
_
0
8
1
0

Clearly, the necessary conditions (C.1) can be complemented with any of the sufficient

conditions (C.2) and (C.3). To demonstrate that the parameter space restricted by the

stability bounds is not empty let us give an explicit example. It is straightforward to verify

that the set of parameters

α = g3 = 1.5 , f1 = f2 = −f3 = −g1 = −g2 = 2

satisfies the constraints (C.1), (C.2) and thus leads to stable dispersion relation of the

scalar mode.

The bounds presented above can be translated directly in terms of the parameters Ai,

Bi, Ci and Di in the original potential (2.6) but we do not do it here.

D Spherically symmetric solutions in Einstein-aether and khrono-metric

theories

In this appendix we demonstrate that spherically symmetric solutions of the khrono-metric

model (5.27) are identical to those of the Einstein-aether theory. Let us consider the

equation of motion for the khronon field coming from varying the action (5.27) with respect

to the field χ

∇µJ
µ = 0 , (D.1)

where

Jµ =
Pµ
ν√
X

1√−g
δS

δuν
.

At the same time the equation of motion for the aether is obtained by varying (5.27) with

respect to the field uν and reads

Pµ
ν

1√−g
δS

δuν
= 0 . (D.2)

In deriving this equation one has to take into account the constraint uµu
µ = 1: it leads

to the appearance of the projector Pµ
ν on the l.h.s. Finally, the energy-momentum tensor

appearing in the Einstein equations for the khrono-metric theory can be written as

Tµν =
2√−g

(

δS

δgµν

∣

∣

∣

∣

uσ

− 1

2

δS

δuσ
uσuµuν

)

,

where the second term comes from the explicit dependence of the vector uµ in the khronon

theory on the metric, see eqs. (2.13), (2.14). This coincides with the energy-momentum

tensor of the aether. To obtain the second term in this case one again has to take into

account the constraint uµu
µ = 1 [35].

Any spherically symmetric configuration of aether is automatically hypersurface-or-

thogonal implying that any spherically symmetric solution of the Einstein-aether theory is

a solution for the khrono-metric theories [35]. The converse is less obvious as the equation

of motion (D.1) of the khronon field contains an additional derivative compared to the
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aether equation (D.2) and thus, a priori, admits more solutions. However, for spherically

symmetric configurations (D.1) implies (D.2). Indeed, the current Jµ obeys the relation

uµJ
µ = 0 .

Hence in the unitary gauge (2.12) its component J0 identically vanishes implying that the

corresponding charge

Q ≡
∫

d3x
√
γJ0

is identically zero. On the other hand, the time derivative of Q is equal to the flux of

the spatial component J i of the current through the 2-sphere at spatial infinity.40 In

spherically symmetric situation this implies that the current itself is zero which brings us

to the equation (D.2). Combining this result with the equality of the energy-momentum

tensors we conclude that spherically symmetric solutions in khrono-metric and Einstein-

aether theories are indeed identical.

E PPN parameters α
PPN

1
, αPPN

2
for the healthy model

In this appendix we derive the formulas for the PPN parameters αPPN
1 , αPPN

2 in the khrono-

metric theory (5.27). We assume the couplings α, β, λ′ to be small and perform calculations

to the leading order in these couplings. We consider the metric produced by a point source

of mass m in its rest frame. This frame does not coincide with the frame defined by the

preferred foliation. Hence the background value ϕ̄ of the khronon field in this frame differs

from the coordinate time. Using the reparameterization symmetry (2.15) we fix

ϕ̄ =
√

1 + v2 t+ vixi ,

where vi is the velocity of the source with respect to the preferred frame. This corresponds

to the background value of the vector uµ

ū0 =
√

1 + v2 , ūi = vi .

The source perturbs the metric and the khronon. One writes,

gµν = ηµν + hµν , ϕ = ϕ̄+ χ .

To the leading order hµν is given by the standard Newtonian expressions,

h
(0)
00 = 2φ(r) , h

(0)
0i = 0 , h

(0)
ij = 2φ(r)δij , (E.1)

where

φ(r) = − m

8πM ′2
0 r

. (E.2)

Our goal is to find corrections to (E.1) in powers of v.

40We assume that the 3d surfaces ϕ = const do not have holes. This is the case if these surfaces form a

regular foliation of the whole space-time, which has topology R
4.
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It is convenient to introduce the following notations

Φ =
1

2
ūµūνhµν , Vρ = ūµP̄ ν

ρ hµν , Hλρ = P̄µ
λ P̄

ν
ρ hµν , (E.3)

∂‖ = ūµ∂µ , ∂⊥µ = P̄ ν
µ∂ν , �⊥ = ∂⊥ν ∂

⊥ν
.

The indices here are raised and lowered using the Minkowski metric ηµν . Expanding to

linear order in perturbations we obtain

uµ = ūµ + ∂⊥µ χ+ ūµΦ ,

∇νuµ = ūν∂
‖∂⊥µ χ+ ∂⊥ν ∂

⊥
µ χ− ūν∂

⊥
µ Φ− 1

2
∂⊥ν Vµ − 1

2
∂⊥µ Vν +

1

2
∂‖Hµν .

Substituting these expressions into the action for the khronon sector (last three terms

in (5.27)) we obtain at the quadratic level,

Sχ = −M
′2
0

2

∫

d4x

{

β

(

(�⊥χ)2 − 2�⊥χ∂⊥ν V
ν − ∂‖χ∂⊥ν ∂

⊥
µHµν +

1

2
(∂⊥ν V

ν)2

+
1

2
∂⊥ν Vµ∂

⊥ν
V µ − ∂‖Vµ∂

⊥
ν H

µν +
1

4
∂‖Hµν∂

‖Hµν

)

(E.4)

+ λ′
(

�⊥χ− ∂⊥ν V
ν +

1

2
∂‖H

)2

+ α
(

∂‖∂⊥µ χ− ∂⊥µ Φ
)2
}

,

where H = Hν
ν . This yields the equation for the khronon perturbation χ,

(λ′+β)(�⊥)2χ+ α(∂‖)2�⊥χ = α∂‖�⊥Φ+ (λ′+β)�⊥∂⊥ν V
ν − λ′

2
∂‖�⊥H − β

2
∂‖∂⊥µ ∂

⊥
ν H

µν .

(E.5)

Variation of the action (E.4) with respect to the metric perturbation hµν gives linearized

khronon energy-momentum tensor:

Tµν
χ = −2

δSχ
δhµν

= −ūµūν δSχ
δΦ

− (ūµP̄ ν
λ + ūνP̄µ

λ )
δSχ
δVλ

− 2P̄µ
λ P̄

ν
ρ

δSχ
δHλρ

,

(E.6)

where we have used the decomposition

hµν = 2ūµūνΦ+ ūµVν + ūνVµ +Hµν .

Evaluating the variations entering into (E.6) we obtain

δSχ
δΦ

= −M ′2
0 α
(

∂‖�⊥χ−�⊥Φ
)

, (E.7a)

δSχ
δVλ

= −M ′2
0

[

(λ′ + β)∂⊥
λ
�⊥χ−

(

λ′ +
β

2

)

∂⊥
λ
∂⊥ρ V

ρ

− β

2
�⊥V λ +

λ′

2
∂⊥

λ
∂‖H +

β

2
∂‖∂⊥ρ H

λρ

]

, (E.7b)

δSχ
δHλρ

= −M ′2
0

[

− λ′

2
ηλρ
(

∂‖�⊥χ− ∂‖∂⊥σ V
σ +

1

2
(∂‖)2H

)

− β

2
∂‖∂⊥

λ
∂⊥

ρ
χ+

β

4
∂‖∂⊥

λ
V ρ +

β

4
∂‖∂⊥

ρ
V λ − β

4
(∂‖)2Hλρ

]

. (E.7c)
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The rest of the calculation proceeds as follows. One inserts the zero-th order met-

ric (E.1) into eqs. (E.3) and find the potentials Φ(0), V
(0)
ρ and H

(0)
λρ . The latter act as a

source for the khronon perturbation χ in eq. (E.5). At the next step one combines the

khronon perturbation found from (E.5) and the zero-th order expressions for the potentials

into the khronon energy-momentum tensor (E.6). This tensor substituted in the r.h.s. of

the Einstein’s equations determines the correction to the metric:

∆h(1)µν =
2

M ′2
0

(

Tχ µν −
1

2
ηµνTχ

)

. (E.8)

Here we have imposed the harmonic gauge,

∂µh
µν − 1

2
∂νh = 0

and have used the fact that the metric is static. Note that the first order in the post-

Newtonian approximation requires to find h00, h0i and hij components of the metric with

the accuracy O(v2), O(v) and O(1) respectively. This implies that we need to determine

Tµν
χ and Tχ to order O(v2), T 0i

χ — to order O(v), and T ij
χ — to order O(1).

Expanding up to terms O(v2) we obtain:

ū0 = ū0 = 1 + v2/2 , ūi = −ūi = vi ,

P̄ 0
0 = −v2 , P̄ i

0 = −P̄ 0
i = vi , P̄ i

j = δij + vivj ,

∂‖ = −vi∂i , ∂⊥0 = vi∂i , ∂⊥i = ∂i + vivj∂j

�⊥ = −∆− vivj∂i∂j ,

where we have used that derivatives act on static configurations. Substituting these ex-

pressions together with (E.1) into (E.3) we find

Φ(0) = (1 + 2v2)φ(r) ,

V
(0)
0 = −4v2φ(r) , V

(0)
i = −4viφ(r) ,

H
(0)
00 = 2v2φ(r) , H

(0)
0i = 2viφ(r) , H

(0)
ij = (2δij + 6vivj)φ(r) ,

H(0) = (−6− 4v2)φ(r)

The khronon equation (E.5) takes the form,

(λ′ + β)∆2χ = (α− λ′ − 3β)vi∂i∆φ(r) , (E.9)

where on the l.h.s. we have neglected terms O(v2∆2χ) as they are of higher order in v.

From (E.9) we find

∆χ =
α− λ′ − 3β

λ′ + β
vi∂iφ(r) ,

meaning that χ is of order O(v).

Let us estimate the orders of the variations (E.7). One finds by inspection that
δSχ

δΦ is

of order O(1),
δSχ

δVλ
— at most of order O(v),

δSχ

δHλρ
— at most of order O(v2). This allows
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to simplify the khronon energy-momentum tensor. To the required orders we have:

Tχ 00 = −(1 + v2)
δSχ
δΦ

+ 2vi
δSχ
δVi

, (E.10a)

Tχ = −δSχ
δΦ

+ 2δij
δSχ
δHij

, (E.10b)

Tχ 0i = −vi δSχ
δΦ

+
δSχ
δVi

, (E.10c)

Tχ ij = 0 . (E.10d)

One evaluates the variations appearing in these formulas,

δSχ
δΦ

= −M ′2
0 α

[

(1 + 2v2)∆φ(r) +
α− 2β

λ′ + β
vivj∂i∂jφ(r)

]

, (E.11a)

δSχ
δVi

= −M ′2
0

[

2βvi∆φ(r) + (α− 2β)vj∂i∂jφ(r)
]

, (E.11b)

δij
δSχ
δHij

= −M ′2
0

(α− 2β)(3λ′ + β)

2(λ′ + β)
vivj∂i∂jφ(r) . (E.11c)

Inserting (E.11) into (E.10) and substituting the result into (E.8) we find the equations for

the first order corrections to the metric,

∆h
(1)
00 =

(

α+ 4(α− 2β)v2
)

∆φ(r) +
(α− 2β)(α− λ′ − 3β)

λ′ + β
vivj∂i∂jφ(r) , (E.12a)

∆h
(1)
0i = 2(α− 2β)vi∆φ(r)− 2(α− 2β)vj∂i∂jφ(r) , (E.12b)

∆h
(1)
ij = αδij∆φ(r) . (E.12c)

It is straightforward to solve these equations for the explicit form (E.2) of the function φ(r).

Note that the second term on the r.h.s. of (E.12b) can be removed by a time-independent

gauge transformation. Combining the result with the Newtonian expressions (E.1) we

obtain the metric (5.33) with

GN =
1

8πM ′2
0

(

1 +
α

2

)

(E.13)

and the PPN parameters αPPN
1 , αPPN

2 quoted in (5.34). The expression (E.13) coincides

with (5.30) to linear order in α.
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[11] P. Hořava and C.M. Melby-Thompson, General covariance in quantum gravity at a Lifshitz

point, Phys. Rev. D 82 (2010) 064027 [arXiv:1007.2410] [SPIRES].

[12] T.P. Sotiriou, M. Visser and S. Weinfurtner, Quantum gravity without Lorentz invariance,

JHEP 10 (2009) 033 [arXiv:0905.2798] [SPIRES].
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