14 research outputs found

    Ligand-binding properties and subcellular localization of maize cytokinin receptors

    Get PDF
    The ligand-binding properties of the maize (Zea mays L.) cytokinin receptors ZmHK1, ZmHK2, and ZmHK3a have been characterized using cytokinin binding assays with living cells or membrane fractions. According to affinity measurements, ZmHK1 preferred N6-(Ī”2-isopentenyl)adenine (iP) and had nearly equal affinities to trans-zeatin (tZ) and cis-zeatin (cZ). ZmHK2 preferred tZ and iP to cZ, while ZmHK3a preferred iP. Only ZmHK2 had a high affinity to dihydrozeatin (DZ). Analysis of subcellular fractions from leaves and roots of maize seedlings revealed specific binding of tZ in the microsome fraction but not in chloroplasts or mitochondria. In competitive binding assays with microsomes, tZ and iP were potent competitors of [3H]tZ while cZ demonstrated significantly lower affinity; adenine was almost ineffective. The binding specificities of microsomes from leaf and root cells for cytokinins were consistent with the expression pattern of the ZmHKs and our results on individual receptor properties. Aqueous two-phase partitioning and sucrose density-gradient centrifugation followed by immunological detection with monoclonal antibody showed that ZmHK1 was associated with the endoplasmic reticulum (ER). This was corroborated by observations of the subcellular localization of ZmHK1 fusions with green fluorescent protein in maize protoplasts. All these data strongly suggest that at least a part of cytokinin perception occurs in the ER

    Core features of the hormonal status in in vitro grown potato plants

    No full text
    Some time ago, potato transformants expressing Agrobacterium-derived auxin synthesis gene tms1 were generated. These tms1-transgenic plants, showing enhanced productivity, were studied for their hormonal status, turnover and responses in comparison with control plants. For this purpose, contents of phytohormones belonging to six different classes (auxins, cytokinins, gibberellins, abscisic, jasmonic and salicylic acids) were determined by a sensitive UPLC-MS/MS method in tubers and shoots of in vitro grown plants. To date, this study represents the most comprehensive analysis of the potato hormonal system. On the basis of obtained results, several new generalizations concerning potato hormonal status were drawn. Overall, these data can serve as a framework for forthcoming integrative studies of the hormonal system in potato plants

    Tuber-Specific Expression of Two Gibberellin Oxidase Transgenes from Arabidopsis Regulates over Wide Ranges the Potato Tuber Formation

    No full text
    Potato (Solanum tuberosum L.) tuberization is a practically important natural process regulated by various factors including phyto hormones. This work was aimed at studying characteristics of in vitro cultivated potato plants transformed with the AtGA20-oxidase gene promoting biosynthesis of bioactive gibberellins (GAs) or with the AtGA2-oxidase gene acting oppositely, i.e. deactivating functional GAs. Both transgenes originated from Arabidopsis and were fused to a sugar-sensitive B33 patatin promoter providing their expression predominantly in tubers. Global phytohormone determination in AtGA20ox-transformants revealed active GA1 at high and moderate concentrations in tubers and shoots, respectively. In control plants,GA1 was virtually absent. Together with GAs, contents of some other phytohormones were altered in transgenic plants. This was especially true for the auxin content which increased ~15-fold in tubers and more than4-fold in shoots. Also the jasmonic acid content exhibited a tuber-specific increase while the content of abscisic acid decreased both in tubers and shoots. The dynamics of tuberization in transformed and non transformed potato plants was recorded in in vitro parallel assays. The transgene for GA inactivation enhanced tuber formation while the transgene promoting active GA synthesis reduced potato productivity. Hence, the crucial role of gibberellin in potato productivity was corroborated. These results showed that the manipulation of the local GA level by using the foreign GA oxidase genes and organ-specific promoters is useful not only to investigate the molecular mechanisms governing tuberization, but also as a biotechnological tool for the manipulation of tuber formation without marked impairment of other physiological traits of potatoes

    The Cytokinin Receptors of Arabidopsis Are Located Mainly to the Endoplasmic Reticulum1[W][OA]

    No full text
    The plant hormone cytokinin is perceived by membrane-located sensor histidine kinases. Arabidopsis (Arabidopsis thaliana) possesses three cytokinin receptors: ARABIDOPSIS HISTIDINE KINASE2 (AHK2), AHK3, and CYTOKININ RESPONSE1/AHK4. The current model predicts perception of the cytokinin signal at the plasma membrane. However, cytokinin-binding studies with membrane fractions separated by two-phase partitioning showed that in the wild type, as well as in mutants retaining only single cytokinin receptors, the major part of specific cytokinin binding was associated with endomembranes. Leaf epidermal cells of tobacco (Nicotiana benthamiana) expressing receptor-green fluorescent protein fusion proteins and bimolecular fluorescence complementation analysis showed strong fluorescence of the endoplasmic reticulum (ER) network for all three receptors. Furthermore, separation of the microsomal fraction of Arabidopsis plants expressing Myc-tagged AHK2 and AHK3 receptors by sucrose gradient centrifugation followed by immunoblotting displayed the Mg2+-dependent density shift typical of ER membrane proteins. Cytokinin-binding assays, fluorescent fusion proteins, and biochemical fractionation all showed that the large majority of cytokinin receptors are localized to the ER, suggesting a central role of this compartment in cytokinin signaling. A modified model for cytokinin signaling is proposed

    Modeling of Proteinā€“Protein Interactions in Cytokinin Signal Transduction

    No full text
    The signaling of cytokinins (CKs), classical plant hormones, is based on the interaction of proteins that constitute the multistep phosphorelay system (MSP): catalytic receptors—sensor histidine kinases (HKs), phosphotransmitters (HPts), and transcription factors—response regulators (RRs). Any CK receptor was shown to interact in vivo with any of the studied HPts and vice versa. In addition, both of these proteins tend to form a homodimer or a heterodimeric complex with protein-paralog. Our study was aimed at explaining by molecular modeling the observed features of in planta protein−protein interactions, accompanying CK signaling. For this purpose, models of CK-signaling proteins’ structure from Arabidopsis and potato were built. The modeled interaction interfaces were formed by rather conserved areas of protein surfaces, complementary in hydrophobicity and electrostatic potential. Hot spots amino acids, determining specificity and strength of the interaction, were identified. Virtual phosphorylation of conserved Asp or His residues affected this complementation, increasing (Asp-P in HK) or decreasing (His-P in HPt) the affinity of interacting proteins. The HK−HPt and HPt−HPt interfaces overlapped, sharing some of the hot spots. MSP proteins from Arabidopsis and potato exhibited similar properties. The structural features of the modeled protein complexes were consistent with the experimental data

    Cytokinin Perception in Ancient Plants beyond Angiospermae

    No full text
    Cytokinins (CKs) control many plant developmental processes and responses to environmental cues. Although the CK signaling is well understood, we are only beginning to decipher its evolution. Here, we investigated the CK perception apparatus in early-divergent plant species such as bryophyte Physcomitrium patens, lycophyte Selaginella moellendorffii, and gymnosperm Picea abies. Of the eight CHASE-domain containing histidine kinases (CHKs) examined, two CHKs, PpCHK3 and PpCHK4, did not bind CKs. All other CHK receptors showed high-affinity CK binding (KD of nM range), with a strong preference for isopentenyladenine over other CK nucleobases in the moss and for trans-zeatin over cis-zeatin in the gymnosperm. The pH dependences of CK binding for these six CHKs showed a wide range, which may indicate different subcellular localization of these receptors at either the plasma- or endoplasmic reticulum membrane. Thus, the properties of the whole CK perception apparatuses in early-divergent lineages were demonstrated. Data show that during land plant evolution there was a diversification of the ligand specificity of various CHKs, in particular, the rise in preference for trans-zeatin over cis-zeatin, which indicates a steadily increasing specialization of receptors to various CKs. Finally, this distinct preference of individual receptors to different CK versions culminated in vascular plants, especially angiosperms
    corecore