13 research outputs found

    Higher circulating EGF levels associate with a decreased risk of IgE sensitization in young children

    Get PDF
    Background Decreased exposure to microbial agents in industrialized countries and urban living areas is considered as a risk factor of developing immune-mediated diseases, such as allergies and asthma. Epithelial surfaces in the gastrointestinal and respiratory tracts and in the skin constitute the primary areas in contact with the environmental microbial load. Methods We analyzed the levels of 30 cytokines and growth factors in serum or plasma as markers of the immune maturation in the participants in the DIABIMMUNE study from Russian Karelia (n = 60), Estonia (n = 83) and Finland (n = 89), three neighboring countries with remarkable differences in the incidences of allergies, asthma and autoimmune diseases. Results We observed an upregulation of T helper cell signature cytokines during the first 12 months of life, reflecting natural development of adaptive immune responses. During the first years of life, circulating concentrations of epidermal growth factor (EGF) were significantly higher, especially in Russian children compared with Finnish children. The children who developed IgE sensitization showed lower levels of EGF than those without such responses. Conclusion Our results suggest that low circulating EGF levels associate with the risk of allergies possibly via the effects on the epithelial integrity and mucosal homeostasis.Peer reviewe

    Higher circulating EGF levels associate with a decreased risk of IgE sensitization in young children

    Get PDF
    Background Decreased exposure to microbial agents in industrialized countries and urban living areas is considered as a risk factor of developing immune-mediated diseases, such as allergies and asthma. Epithelial surfaces in the gastrointestinal and respiratory tracts and in the skin constitute the primary areas in contact with the environmental microbial load. Methods We analyzed the levels of 30 cytokines and growth factors in serum or plasma as markers of the immune maturation in the participants in the DIABIMMUNE study from Russian Karelia (n = 60), Estonia (n = 83) and Finland (n = 89), three neighboring countries with remarkable differences in the incidences of allergies, asthma and autoimmune diseases. Results We observed an upregulation of T helper cell signature cytokines during the first 12 months of life, reflecting natural development of adaptive immune responses. During the first years of life, circulating concentrations of epidermal growth factor (EGF) were significantly higher, especially in Russian children compared with Finnish children. The children who developed IgE sensitization showed lower levels of EGF than those without such responses. Conclusion Our results suggest that low circulating EGF levels associate with the risk of allergies possibly via the effects on the epithelial integrity and mucosal homeostasis.</p

    Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life

    Get PDF
    The human gut microbiome matures towards the adult composition during the first years of life and is implicated in early immune development. Here, we investigate the effects of microbial genomic diversity on gut microbiome development using integrated early childhood data sets collected in the DIABIMMUNE study in Finland, Estonia and Russian Karelia. We show that gut microbial diversity is associated with household location and linear growth of children. Single nucleotide polymorphism- and metagenomic assembly-based strain tracking revealed large and highly dynamic microbial pangenomes, especially in the genus Bacteroides, in which we identified evidence of variability deriving from Bacteroides-targeting bacteriophages. Our analyses revealed functional consequences of strain diversity; only 10% of Finnish infants harboured Bifidobacterium longum subsp. infantis, a subspecies specialized in human milk metabolism, whereas Russian infants commonly maintained a probiotic Bifidobacterium bifidum strain in infancy. Groups of bacteria contributing to diverse, characterized metabolic pathways converged to highly subject-specific configurations over the first two years of life. This longitudinal study extends the current view of early gut microbial community assembly based on strain-level genomic variation.Peer reviewe

    Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life

    No full text
    The human gut microbiome matures towards the adult composition during the first years of life and is implicated in early immune development. Here, we investigate the effects of microbial genomic diversity on gut microbiome development using integrated early childhood data sets collected in the DIABIMMUNE study in Finland, Estonia and Russian Karelia. We show that gut microbial diversity is associated with household location and linear growth of children. Single nucleotide polymorphism- and metagenomic assembly-based strain tracking revealed large and highly dynamic microbial pangenomes, especially in the genus Bacteroides, in which we identified evidence of variability deriving from Bacteroides-targeting bacteriophages. Our analyses revealed functional consequences of strain diversity; only 10% of Finnish infants harboured Bifidobacterium longum subsp. infantis, a subspecies specialized in human milk metabolism, whereas Russian infants commonly maintained a probiotic Bifidobacterium bifidum strain in infancy. Groups of bacteria contributing to diverse, characterized metabolic pathways converged to highly subject-specific configurations over the first two years of life. This longitudinal study extends the current view of early gut microbial community assembly based on strain-level genomic variation.</p
    corecore