90 research outputs found

    Novel signaling pathways mediating reciprocal control of keratinocyte migration and wound epithelialization through M3 and M4 muscarinic receptors

    Get PDF
    To test the hypothesis that keratinocyte (KC) migration is modulated by distinct muscarinic acetylcholine (ACh) receptor subtypes, we inactivated signaling through specific receptors in in vitro and in vivo models of reepithelialization by subtype-selective antagonists, small interfering RNA, and gene knockout in mice. KC migration and wound reepithelialization were facilitated by M4 and inhibited by M3. Additional studies showed that M4 increases expression of “migratory” integrins α5β1, αVβ5, and αVβ6, whereas M3 up-regulates “sedentary” integrins α2β1 and α3β1. Inhibition of migration by M3 was mediated through Ca2+-dependent guanylyl cyclase–cyclic GMP–protein kinase G signaling pathway. The M4 effects resulted from inhibition of the inhibitory pathway involving the adenylyl cyclase–cyclic AMP–protein kinase A pathway. Both signaling pathways intersected at Rho, indicating that Rho kinase provides a common effector for M3 and M4 regulation of cell migration. These findings offer novel insights into the mechanisms of ACh-mediated modulation of KC migration and wound reepithelialization, and may aid the development of novel methods to promote wound healing

    Penghidap SMA cemerlang akademik

    Get PDF
    Saya hanya boleh menulis dan memegang beban tidak melebihi 500gram. Lebih daripada itu memang saya tidak mampu," kata Siti Hawa Apandi, 24, dari Taman Mahkota Aman, di sini

    Central role of α7 nicotinic receptor in differentiation of the stratified squamous epithelium

    Get PDF
    Several ganglionic nicotinic acetylcholine receptor (nAChR) types are abundantly expressed in nonneuronal locations, but their functions remain unknown. We found that keratinocyte α7 nAChR controls homeostasis and terminal differentiation of epidermal keratinocytes required for formation of the skin barrier. The effects of functional inactivation of α7 nAChR on keratinocyte cell cycle progression, differentiation, and apoptosis were studied in cell monolayers treated with α-bungarotoxin or antisense oligonucleotides and in the skin of Acra7 homozygous mice lacking α7 nAChR channels. Elimination of the α7 signaling pathway blocked nicotine-induced influx of 45Ca2+ and also inhibited terminal differentiation of these cells at the transcriptional and/or translational level. On the other hand, inhibition of the α7 nAChR pathway favored cell cycle progression. In the epidermis of α7−/− mice, the abnormalities in keratinocyte gene expression were associated with phenotypic changes characteristic of delayed epidermal turnover. The lack of α7 was associated with up-regulated expression of the α3 containing nAChR channels that lack α5 subunit, and both homomeric α9- and heteromeric α9α10-made nAChRs. Thus, this study demonstrates that ACh signaling through α7 nAChR channels controls late stages of keratinocyte development in the epidermis by regulating expression of the cell cycle progression, apoptosis, and terminal differentiation genes and that these effects are mediated, at least in part, by alterations in transmembrane Ca2+ influx

    Pemphigus autoimmunity: Hypotheses and realities

    Get PDF
    The goal of contemporary research in pemphigus vulgaris and pemphigus foliaceus is to achieve and maintain clinical remission without corticosteroids. Recent advances of knowledge on pemphigus autoimmunity scrutinize old dogmas, resolve controversies, and open novel perspectives for treatment. Elucidation of intimate mechanisms of keratinocyte detachment and death in pemphigus has challenged the monopathogenic explanation of disease immunopathology. Over 50 organ-specific and non-organ-specific antigens can be targeted by pemphigus autoimmunity, including desmosomal cadherins and other adhesion molecules, PERP cholinergic and other cell membrane (CM) receptors, and mitochondrial proteins. The initial insult is sustained by the autoantibodies to the cell membrane receptor antigens triggering the intracellular signaling by Src, epidermal growth factor receptor kinase, protein kinases A and C, phospholipase C, mTOR, p38 MAPK, JNK, other tyrosine kinases, and calmodulin that cause basal cell shrinkage and ripping desmosomes off the CM. Autoantibodies synergize with effectors of apoptotic and oncotic pathways, serine proteases, and inflammatory cytokines to overcome the natural resistance and activate the cell death program in keratinocytes. The process of keratinocyte shrinkage/detachment and death via apoptosis/oncosis has been termed apoptolysis to emphasize that it is triggered by the same signal effectors and mediated by the same cell death enzymes. The natural course of pemphigus has improved due to a substantial progress in developing of the steroid-sparing therapies combining the immunosuppressive and direct anti-acantholytic effects. Further elucidation of the molecular mechanisms mediating immune dysregulation and apoptolysis in pemphigus should improve our understanding of disease pathogenesis and facilitate development of steroid-free treatment of patients

    Naturally Occurring Variants of Human Α9 Nicotinic Receptor Differentially Affect Bronchial Cell Proliferation and Transformation

    Get PDF
    Isolation of polyadenilated mRNA from human immortalized bronchial epithelial cell line BEP2D revealed the presence of multiple isoforms of RNA coded by the CHRNA9 gene for α9 nicotinic acetylcholine receptor (nAChR). BEP2D cells were homozygous for the rs10009228 polymorphism encoding for N442S amino acid substitution, and also contained mRNA coding for several truncated isoforms of α9 protein. To elucidate the biologic significance of the naturally occurring variants of α9 nAChR, we compared the biologic effects of overexpression of full-length α9 N442 and S442 proteins, and the truncated α9 variant occurring due to a loss of the exon 4 sequence that causes frame shift and early termination of the translation. These as well as control vector were overexpressed in the BEP2D cells that were used in the assays of proliferation rate, spontaneous vs. tobacco nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced cellular transformation, and tumorigenicity in cell culture and mice. Overexpression of the S442 variant significantly increased cellular proliferation, and spontaneous and NNK-induced transformation. The N442 variant significantly decreased cellular transformation, without affecting proliferation rate. Overexpression of the truncated α9 significantly decreased proliferation and suppressed cellular transformation. These results suggested that α9 nAChR plays important roles in regulation of bronchial cell growth by endogenous acetylcholine and exogenous nicotine, and susceptibility to NNK-induced carcinogenic transformation. The biologic activities of α9 nAChR may be regulated at the splicing level, and genetic polymorphisms in CHRNA9 affecting protein levels, amino acid sequence and RNA splicing may influence the risk for lung cancer

    Definitions and outcome measures for mucous membrane pemphigoid: Recommendations of an international panel of experts

    Get PDF
    Mucous membrane pemphigoid encompasses a group of autoimmune bullous diseases with a similar phenotype characterized by subepithelial blisters, erosions, and scarring of mucous membranes, skin, or both. Although knowledge about autoimmune bullous disease is increasing, there is often a lack of clear definitions of disease, outcome measures, and therapeutic end points. With clearer definitions and outcome measures, it is possible to directly compare the results and data from various studies using meta-analyses. This consensus statement provides accurate and reproducible definitions for disease extent, activity, outcome measures, end points, and therapeutic response for mucous membrane pemphigoid and proposes a disease extent score, the Mucous Membrane Pemphigoid Disease Area Index

    Meeting Report of the Pathogenesis of Pemphigus and Pemphigoid Meeting in Munich, September 2016

    Get PDF
    Autoimmune blistering diseases are a heterogeneous group of about a dozen complex disorders that are characterized by intraepidermal (pemphigus) and subepidermal blistering (pemphigoid diseases and dermatitis herpetiformis). The Pathogenesis of Pemphigus and Pemphigoid Meeting, organized by the Departments of Dermatology in Lubeck and Marburg and the Institute of Anatomy and Cell Biology, Munich, was held in September 2016 in Munich. The meeting brought together basic scientists and clinicians from all continents dedicating their work to autoimmune blistering diseases. Considerable advances have been made in describing incidences and prevalences of these diseases and linking comorbidities with autoantibody reactivities and clinical variants, for example, dipeptidyl peptidase-IV inhibitor-associated noninflammatory bullous pemphigoid. Although new entities are still being described, diagnosis of most autoimmune blistering diseases can now be achieved using standardized and widely available serological test systems. Various experimental mouse models of pemphigus and pemphigoid disease are increasingly being used to understand mechanisms of central and peripheral tolerance and to evaluate more specific treatment approaches for these disorders, such as molecules that target autoreactive T and B cells and anti-inflammatory mediators, that is, dimethyl fumarate, phosphodiesterase 4, and leukotriene B4 inhibitors in pemphigoid disorders, and chimeric antigen receptor T cells in pemphigus. Very recent experimental data about the immunopathology and the determinants of autoantibody formation and keratinocyte susceptibility in pemphigus were discussed. With regard to cellular mechanisms leading to the loss of cell-cell adhesion, new ideas were shared in the field of signal transduction. Major steps were taken to put the various partly contradictory and controversial findings about the effects of pemphigus autoantibodies and other inflammatory mediators into perspective and broaden our view of the complex pathophysiology of this disease. Finally, two investigator-initiated multicenter trials highlighted doxycycline and dapsone as valuable medications in the treatment of bullous pemphigoid.Non peer reviewe

    Non-Desmoglein Antibodies in Patients With Pemphigus Vulgaris

    No full text
    Pemphigus vulgaris (PV) is a potentially life-threatening mucocutaneous autoimmune blistering disease. Patients develop non-healing erosions and blisters due to cell–cell detachment of keratinocytes (acantholysis), with subsequent suprabasal intraepidermal splitting. Identified almost 30 years ago, desmoglein-3 (Dsg3), a Ca2+-dependent cell adhesion molecule belonging to the cadherin family, has been considered the “primary” autoantigen in PV. Proteomic studies have identified numerous autoantibodies in patients with PV that have known roles in the physiology and cell adhesion of keratinocytes. Antibodies to these autoantibodies include desmocollins 1 and 3, several muscarinic and nicotinic acetylcholine receptor subtypes, mitochondrial proteins, human leukocyte antigen molecules, thyroid peroxidase, and hSPCA1—the Ca2+/Mn2+-ATPase encoded by ATP2C1, which is mutated in Hailey–Hailey disease. Several studies have identified direct pathogenic roles of these proteins, or synergistic roles when combined with Dsg3. We review the role of these direct and indirect mechanisms of non-desmoglein autoantibodies in the pathogenesis of PV
    corecore