992 research outputs found

    Evaluation of PFC and AGID as flock-screening tests for OJD : National Ovine Johne's Disease Control and Evaluation Program.

    Get PDF
    The aims of this project were to provide comparative estimates of the flock-sensitivity of PFC and AGID under a range of likely scenarios, using a simulation approach. Sample sizes required to achieve equivalent performance of PFC and AGID under different conditions of prevalence and desired flocksensitivity were also estimated, as well as the effect of variations in the assumptions on which the model was based. The resulting Monte Carlo simulation model indicated (amongst other recommendations) that PFC should be the preferred screening test for surveillance and market-assurance testing for ovine Johne’s disease in Australia, although the AGID may be an appropriate alternative where prevalence is likely to be high or where a rapid result is required

    Ca 2+ signalling in urethral interstitial cells of Cajal

    Get PDF
    Interstitial cells of Cajal (ICC) in the urethra have been proposed as specialized pacemakers that are involved in the generation of urethral tone and therefore the maintenance of urinary continence. Recent studies on freshly dispersed ICC from the urethra of rabbits have demonstrated that pacemaker activity in urethra ICC is characterized by spontaneous transient depolarizations (STDs) under current clamp and spontaneous transient inward currents (STICs) under voltage clamp. When these events were simultaneously recorded with changes in intracellular Ca 2+ (using a Nipkow spinning disk confocal microscope) they were found to be associated with global Ca 2+ oscillations. In this short review we will consider some of these recent findings regarding the contribution of intracellular Ca 2+ stores and Ca 2+ influx to the generation of pacemaker activity in urethral ICC with particular emphasis on the contribution of reverse Na + /Ca 2+ exchange (NCX)

    Development of computer models to describe the epidemiology of Johne's disease in sheep.

    Get PDF
    The pathogenesis, epidemiology and options for control of Johne's disease in sheep were reviewed and mathematical models developed to simulate the spread of Johne’s disease within infected flocks, and between flocks on a regional basis. The models (the OJD Flock Model and the OJD Regional Model) also allow the evaluation and comparison of various control options at both flock and regional levels. Adequate data is still unavailable to allow accurate estimates of the true values for many of the models' parameters. However, as more precise estimates of the values of key parameters become available, the models will allow a rapid assessment of the likely impact of these values on our understanding of the disease

    Recovery of a Medieval Brucella melitensis genome using shotgun metagenomics

    Get PDF
    ABSTRACT Shotgun metagenomics provides a powerful assumption-free approach to the recovery of pathogen genomes from contemporary and historical material. We sequenced the metagenome of a calcified nodule from the skeleton of a 14th-century middle-aged male excavated from the medieval Sardinian settlement of Geridu. We obtained 6.5-fold coverage of a Brucella melitensis genome. Sequence reads from this genome showed signatures typical of ancient or aged DNA. Despite the relatively low coverage, we were able to use information from single-nucleotide polymorphisms to place the medieval pathogen genome within a clade of B. melitensis strains that included the well-studied Ether strain and two other recent Italian isolates. We confirmed this placement using information from deletions and IS711 insertions. We conclude that metagenomics stands ready to document past and present infections, shedding light on the emergence, evolution, and spread of microbial pathogens

    Contribution of K v 2.1 channels to the delayed rectifier current in freshly dispersed smooth muscle cells from rabbit urethra

    Get PDF
    We have characterized the native voltage-dependent K + (K v ) current in rabbit urethral smooth muscle cells (RUSMC) and compared its pharmacological and biophysical properties with K v 2.1 and K v 2.2 channels cloned from the rabbit urethra and stably expressed in HEK 293 cells (HEK Kv2.1 and HEK Kv2.2 ). RUSMC were perfused with Hanks' solution at 37°C and studied using the patch clamp technique with K + -rich pipette solutions. Cells were bathed in 100 nM penitrem A (Pen A) to block large conductance Ca 2+ -activated K + (BK) currents and depolarized to +40 mV for 500 ms to evoke K v currents. These were unaffected by margatoxin, κ-dendrotoxin or α-dendrotoxin (100 nM, n=3-5), but were blocked by stromatoxin-1 (ScTx, IC 50 ~130 nM), consistent with the idea that the currents were carried through K v 2 channels. RNA was detected for K v 2.1 K v 2.2 and the silent subunit K v 9.3 in urethral smooth muscle. Immunocytochemistry showed membrane staining for both K v 2 subtypes and K v 9.3 in isolated RUSMC. HEK Kv2.1 and HEK Kv2.2 currents were blocked in a concentration dependent manner by ScTx with estimated IC 50 values of ~150 nM (K v 2.1, n=5) and 70 nM (K v 2.2, n=6). The mean V 1/2 of inactivation of the USMC K v current was – 56±3 mV (n=9). This was similar to the HEK Kv2.1 current (–55 ± 3 mV, n=13) but significantly different from the HEK Kv2.2 currents (-30 ± 3 mV, n=11). Action potentials (AP) evoked from RUSMC studied under current clamp mode were unaffected by ScTx. However when ScTx was applied in the presence of Pen A, the AP duration was significantly prolonged. Similarly, ScTx increased the amplitude of spontaneous contractions threefold, but only after Pen A application. These data suggest that K v 2.1 channels contribute significantly to the K v current in RUSMC

    Experimental investigation of aminoacetonitrile formation through the Strecker synthesis in astrophysical-like conditions: reactivity of methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN)

    No full text
    International audienceAstronomy & Astrophysics Experimental investigation of aminoacetonitrile formation through the Strecker synthesis in astrophysical-like conditions: reactivity of methanimine (CH 2 NH), ammonia (NH 3), and hydrogen cyanide (HCN) ABSTRACT Context. Studing chemical reactivity in astrophysical environments is an important means for improving our understanding of the origin of the organic matter in molecular clouds, in protoplanetary disks, and possibly, as a final destination, in our solar system. Laboratory simulations of the reactivity of ice analogs provide important insight into the reactivity in these environments. Here, we use these experimental simulations to investigate the Strecker synthesis leading to the formation of aminoacetonitrile in astrophysical-like conditions. The aminoacetonitrile is an interesting compound because it was detected in SgrB2, hence could be a precursor of the smallest amino acid molecule, glycine, in astrophysical environments. Aims. We present the first experimental investigation of the formation of aminoacetonitrile NH 2 CH 2 CN from the thermal processing of ices including methanimine (CH 2 NH), ammonia (NH 3), and hydrogen cyanide (HCN) in interstellar-like conditions without VUV photons or particules. Methods. We use Fourier Transform InfraRed (FTIR) spectroscopy to monitor the ice evolution during its warming. Infrared spec-troscopy and mass spectroscopy are then used to identify the aminoacetonitrile formation. Results. We demonstrate that methanimine can react with − CN during the warming of ice analogs containing at 20 K methanimine, ammonia, and [NH + 4 − CN] salt. During the ice warming, this reaction leads to the formation of poly(methylene-imine) polymers. The polymer length depend on the initial ratio of mass contained in methanimine to that in the [NH + 4 − CN] salt. In a methanimine excess, long polymers are formed. As the methanimine is progressively diluted in the [NH + 4 − CN] salt, the polymer length decreases until the aminoacetonitrile formation at 135 K. Therefore, these results demonstrate that aminoacetonitrile can be formed through the second step of the Strecker synthesis in astrophysical-like conditions

    The effect of high [K(+)]o on spontaneous Ca(2+) waves in freshly isolated interstitial cells of Cajal from the rabbit urethra.

    Get PDF
    Interstitial cells of Cajal (ICC) act as putative pacemaker cells in the rabbit urethra. Pacemaker activity in ICC results from spontaneous global Ca(2+) waves that can be increased in frequency by raising external [K(+)]. The purpose of this study was to elucidate the mechanism of this response. Intracellular [Ca(2+)] was measured in fluo-4-loaded smooth muscle cells (SMCs) and ICC using a Nipkow spinning disk confocal microscope. Increasing [K(+)]o to 60 mmol/L caused an increase in [Ca(2+)]i accompanied by contraction in SMCs. Raising [K(+)]o did not cause contraction in ICC, but the frequency of firing of spontaneous calcium waves increased. Reducing [Ca(2+)]o to 0 mmol/L abolished the response in both cell types. Nifedipine of 1 μmol/L blocked the response of SMC to high [K(+)]o, but did not affect the increase in firing in ICC. This latter effect was blocked by 30 μmol/L NiCl2 but not by the T-type Ca(2+) channel blocker mibefradil (300 nmol/L). However, inhibition of Ca(2+) influx via reverse-mode sodium/calcium exchange (NCX) using either 1 μmol/L SEA0400 or 5 μmol/L KB-R7943 did block the effect of high [K(+)]o on ICC. These data suggest that high K(+) solution increases the frequency of calcium waves in ICC by increasing Ca(2+) influx through reverse-mode NCX
    • …
    corecore