27 research outputs found

    Extreme-ultraviolet coherent pulse amplification in argon

    Get PDF
    The amplification of ultrashort extreme-ultraviolet (XUV) pulses in argon in high-order harmonic generation processes is studied by using the time-dependent Schrödinger equation in the spin-free one-active-electron and single-atom approximation. We consider a neutral argon atom initially in the valence 3p state and a sufficiently intense two-cycle driving infrared (IR) pulse for the atom to be mainly ionized after the first laser cycle. The correlated dynamics and transitions from the valence 3p to a virtual subvalence 3s state and in the ionized regions are examined by synchronizing a 1.5-fs XUV pulse to the IR pulse. The calculated single-atom gain spectrum (26–45 eV) agrees with recent experimental measurements. We discuss different channels that can be present in the gain process as a function of pulse parameters and through an analysis of the dynamics of the populations in terms of field-free eigenstates. When the XUV pulse is considered at the end of the driving IR field the amplification is due to contributions of stimulated recombination from excited Rydberg and low energy continuum states to the 3s and 3p states of argon. In regions where the IR field is intense, high energy and angular momentum states are populated and the medium can interact with the pulses through bound and continuum states involving parametric transitions, which is further confirmed by studying classical electron trajectories. We discuss how these parametric interactions might be suitable for amplification of photon energies far from the ionization threshold as observed in the experiments.Peer ReviewedPostprint (author's final draft

    Time Resolved Spectroscopy with Femtosecond X-Ray Pulses

    Get PDF

    High harmonic generation in AlN due to out-of-surface electron orbitals

    Get PDF
    © 2021 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.High harmonic generation in solids is commonly considered as a bulk process. However, there is a controversy whether the experimentally observed effects can in their entirety be described by a pure bulk model. Our results based on beam propagation and spectral characteristics provide a clear signature of the importance of surface effects on the origin of the harmonic generation in solids. Computations performed with a time-dependent density-functional approach corroborate the experimental measurements.European Metrology Programme for Innovation and Research (CC4C); Ministerio de Economía y Competitividad (FIS2017-85526-R); Horizon 2020 Framework Programme (856415). The authors thank Erin Young for growing and characterizing the AlN samples.Postprint (published version

    Non-perturbative generation of DUV/VUV harmonics from crystal surfaces at 108 MHz repetition rate

    Get PDF
    We demonstrate non-perturbative 3rd (267 nm) and 5th (160 nm) harmonic generation in solids from a Ti:sapphire frequency comb (800 nm) at 108 MHz repetition rate. The experiments show that non-perturbative low harmonics are dominantly generated on the surface and on the interface between solids, and that they are not produced by bulk processes from the near-surface layer of the material. Measurements reveal that due to the lack of phase matching, the generated harmonics in bulk are suppressed by orders of magnitude compared to the signal generated on the surface. Our results pave the way for the development of all-solid-state high repetition rate harmonic sources for vacuum ultraviolet spectroscopy and high precision frequency comb metrology.Peer ReviewedPostprint (author's final draft

    Core-level attosecond transient absorption spectroscopy of laser-dressed solid films of Si and Zr

    Get PDF
    We investigated experimentally as well as theoretically the ultrafast response of the wave function of the conduction band (CB) of Si and Zr to a near-infrared laser field using extreme ultraviolet (XUV) absorption spectroscopy in the spectral range of 80–220 eV. The measured dynamics of the XUV transmission demonstrates that the wave function of the CB follows the electric field of the dressing laser pulse. In these terms, laser dressing was earlier mainly studied on gases. Measurements with two-femtosecond and 200-attosecond temporal steps were performed in the vicinity of the SiL2,3 edge near 100 eV, the SiL1 edge near 150 eV, and the ZrM4,5 edge near 180 eV. The observed changes were dependent on the core states being excited by the XUV probe pulse. At the 2p to CB transitions of Si, the XUV transmission increased via the effect of the dressing laser pulse, while at the 2s to CB transition of Si and the 3d to CB transition of Zr, the XUV transmission decreased. Furthermore, beats between the transition from 2p1/2 and 2p3/2 levels of Si and from 3d3/2 and 3d5/2 levels of Zr were observed with 20.7 fs and 3.6 fs periods.Peer ReviewedPostprint (author's final draft

    Attosecond sublevel beating and nonlinear dressing on the 3d-to-5p and 3p-to-5s core-transitions at 91.3 eV and 210.4 eV in krypton

    Get PDF
    © 2017 Optical Society of America. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.Applying extreme ultraviolet (XUV) transient absorption spectroscopy, the dynamics of the two laser dressed transitions 3d5/2-to-5p3/2 and 3p3/2-to-5s1/2 at photon energies of 91.3 eV and 210.4 eV were examined with attosecond temporal resolution. The dressing process was modeled with density matrix equations which are found to describe very accurately both the experimentally observed transmission dynamics and the linear and nonlinear dressing oscillations at 0.75 PHz and 1.5 PHz frequencies. Furthermore, using Fourier transform XUV spectroscopy, quantum beats from the 3d5/2-3d3/2 and 3p3/2-3p1/2 sublevels at 0.3 PHz and 2.0 PHz were experimentally identified and resolved.Peer ReviewedPostprint (published version

    All-solid-state VUV frequency comb at 160 nm using high-harmonic generation in nonlinear femtosecond enhancement cavity

    Get PDF
    © 2019 Optical Society of America. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.We realized a solid-state-based vacuum ultraviolet frequency comb by harmonics generation in an external enhancement cavity. Optical conversions were so far reported by only using gaseous media. We present a theory that allows the most suited solid generation medium to be selected for specific target harmonics by adapting the material’s bandgap. We experimentally use a thin AlN film grown on a sapphire substrate to realize a compact frequency comb high-harmonic source in the Deep Ultraviolet (DUV)/Vacuum Ultraviolet/Deep Ultraviolet (VUV) spectral range. By extending our earlier VUV source [Opt. Express 26, 21900 (2018)] with the enhancement cavity, a sub-Watt level Ti:sapphire femtosecond frequency comb is enhanced to 24 W stored average power, its 3rd, 5th, and 7th harmonics are generated, and the targeted 5th harmonic’s power at 160 nm increased by two orders of magnitude. The emerging nonlinear effects in the solid medium, together with suitable intra-cavity dispersion management, support optimal enhancement and stable locking. To demonstrate the realized frequency comb’s spectroscopic ability, we report on the beat measurement between the 3rd harmonic beam and a 266 nm CW laser reaching about 1 MHz accuracy.Peer ReviewedPostprint (published version

    Avalanche of stimulated forward scattering in high harmonic generation

    Get PDF
    © 2016 [Optical Society of America]. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.Optical amplifiers in all ranges of the electromagnetic spectrum exhibit an essential characteristic, namely the input signal during the propagation in the amplifier medium is multiplied by the avalanche effect of the stimulated emission to produce exponential growth. We perform a theoretical study motivated and supported by experimental data on a He gas amplifier driven by intense 30-fs-long laser pulses and seeded with attosecond pulse trains generated in a separated Ne gas jet. We demonstrate that the strong-field theory in the frame of high harmonic generation fully supports the appearance of the avalanche effect in the amplification of extreme ultraviolet attosecond pulse trains. We theoretically separate and identify different physical processes taking part in the interaction and we demonstrate that X-ray parametric amplification dominates over others. In particular, we identify strong-field mediated intrapulse X-ray parametric processes as decisive for amplification at the single-atom level. We confirm that the amplification takes place at photon energies where the amplifier is seeded and when the seed pulses are perfectly synchronized with the driving strong field in the amplifier. Furthermore, propagation effects, phase matching and seed synchronization can be exploited to tune the amplified spectral range within the seed bandwidth.Peer ReviewedPostprint (author's final draft
    corecore