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Abstract: We demonstrate non-perturbative 3rd (267 nm) and 5th (160 nm) harmonic 
generation in solids from a Ti:sapphire frequency comb (800 nm) at 108 MHz repetition rate. 
The experiments show that non-perturbative low harmonics are dominantly generated on the 
surface and on the interface between solids, and that they are not produced by bulk processes 
from the near-surface layer of the material. Measurements reveal that due to the lack of phase 
matching, the generated harmonics in bulk are suppressed by orders of magnitude compared 
to the signal generated on the surface. Our results pave the way for the development of all-
solid-state high repetition rate harmonic sources for vacuum ultraviolet spectroscopy and high 
precision frequency comb metrology. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

High harmonic generation (HHG) is an attractive method to convert ultrashort laser pulses 
from the infrared or visible spectral range into the vacuum ultraviolet (VUV) or soft x-ray 
spectral range [1]. It produces a coherent, wide spectrum of several harmonic lines, which 
makes HHG a widely used method to generate ultrashort probe pulses for time-resolved 
spectroscopy supporting temporal resolutions in the few-femtosecond and even in the sub-
femtosecond time scales and to study ultrafast physical and chemical processes. For a long 
time, harmonics have been generated in different gases, and HHG from solids has attracted 
attention only in recent years, after the first successful demonstrations of the phenomenon [2, 
3] using mid-infrared laser pulses and later THz driving fields [4].  

In solids, harmonics can be generated at much lower laser intensities than in gases, 
promising the extension of HHG into very compact laser sources and with very high 
repetition rates, reaching even GHz frequencies. Such high repetition rates would be very 
beneficial for time-resolved spectroscopic applications, and VUV or EUV frequency combs 
[5-7] could also be realized in solids for high precision metrology. Consequently, HHG in 
solids is being extensively explored both experimentally and theoretically. Experiments using 
low repetition rate laser sources as pump have demonstrated HHG in different bulk crystals 
[8-11] and 2D materials [12-14] and the first high repetition rate generation at 70-80 MHz has 
recently been reported in sapphire [15-17]. Based on dynamical Bloch oscillations [4, 18], 
non-perturbative generation of HHG in solids is usually explained by interband and intraband 
transitions of the electrons inside the band-structure of solids as they interact with the incident 
laser field as bulk processes [10, 11, 19]. In some cases, the generation of harmonics is also 
described as perturbative cascaded three-wave [20] or four-wave mixing [21] processes.  

Several recent studies have suggested the need to further investigate the precise generation 
of harmonics in solids in order to accurately differentiate between bulk and surface 
generation, and between perturbative and non-perturbative processes. Indeed, in [15] the 
generation of harmonics in solids was observed only from the near-surface layer in sapphire, 
in the 60-120 nm spectral range, and this effect was explained by considering the strong 
absorption of sapphire, which enables only the last about 10-nm-thick layer of the crystal to 
contribute to the HHG signal. Other experiments have found that the 3rd harmonic of a fiber 
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The samples were tilted by about 10°, see Fig. 1(b), to avoid back-reflection into the 
frequency comb. The generated harmonic beam was focused with a VUV-grade MgF2 lens to 
the input slit of a VUV monochromator (McPherson 234/302) equipped with a 300 l/mm 
grating. According to earlier measurements [15], the harmonic beams co-propagate with the 
fundamental laser beam, with any small deviations corrected by the lens that collects them 
onto the spectrometer slit. The HHG sample and the VUV monochromator were in vacuum 
with a background pressure of 10-3 mbar. In certain measurements, a VUV bandpass filter 
was inserted into the HHG beam at the entrance of the monochromator to suppress the 3rd 
harmonic. The spectrally resolved beam was detected with a VUV photomultiplier 
(Hamamatsu R6836), sensitive in the 115-320 nm spectral range, which prevented us from 
detecting the 7th or higher harmonic orders which would also be present. 

3. Harmonic generation on fluoride crystals 

In the first measurement series, fluoride crystals, namely LiF, MgF2, and CaF2 were used with 
different thicknesses. They are commercially available with optically polished VUV windows 
at crystal orientations of (100), (110) and (111). These crystals are wide bandgap isolators 
with absorption edges in the 120-140 nm range. Beyond being transparent in the VUV, these 
fluoride crystals have small non-linear refractive indexes in the range of 1-2×1016 cm2/W 
[23], which gives a non-linear phase shift in the order of π/100 causing negligible non-linear 
spectral or beam profile distortion during propagation in the crystals. Otherwise, our 
conclusions below are drawn mainly from measurements performed when the focus is before 
the crystal surface, in vacuum, as shown in Fig. 1(b). The samples were mounted in a 
motorized rotation stage with the rotation axis perpendicular to the surface, which allows 
finding the direction of the strongest harmonic signal. Furthermore, the crystals were 
translated along the optical axis of the laser beam through the focal region (z-scan). 

Figure 2(a) shows the measured spectra from the crystals optimally positioned and rotated 
to get the highest signal. As it will be seen later in Fig. 3, harmonics (especially the 5th one) 
are stronger from the back surface. The VUV filter was not used here to be able to measure 
the weak 5th harmonic from LiF, and consequently, the 3rd harmonics saturated the detector. 
In the case of CaF2, the signal would reach about 5-times higher. As it can be seen from Fig. 
2, from all fluoride crystals almost the same strong 3rd harmonic can be generated. The 
difference however is large in the case of the 5th harmonic. A suitably strong 5th harmonic is 
produced in CaF2 and a weaker signal is obtained in LiF, while from MgF2 it was not possible 
to generate 5th harmonic. 

Moving the CaF2 crystal along the optical axis away from the optimum position, the laser 
intensity on the surface is scanned in a wide intensity range and the intensity of the generated 
3rd and 5th harmonics is measured and plotted in Fig. 2(b). Here we measured the generated 
harmonics on the front surface, because it was possible to change the laser intensity in a wider 
range without the interference from the other surface. In the experiments, the laser beam was 
focused but still with a NA<0.1 so that the paraxial approximation is preserved. To determine 
the laser intensity on the surface, a focused beam with a certain divergence θ is assumed. The 

laser intensity depends on the beam radius w(z) as 2( ) ( )I z w z−∝  and the beam radius can be 

approximated by a quadratic form as 2 2 2
0 1( )w z a a z zθ≈ + + , giving ( )w z zθ≈  at large z 

values. The laser intensity can be written as  

 ( ){ } 1
22 2 2

0( ) 1 /R RI z z z z zθ
−

 ∝ + −  ,  (1) 

where z0 is the position of the beam waist, zR is the Rayleigh length, and z = 0 or z = L at the 
back or at the front surface of the crystal, respectively, with L being the crystal thickness. The 
intensity of the fundamental laser beam is therefore calculated using Eq. (1) and gives the 
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The measured curves in Fig. 3(a) and 3(c) are plotted after this background correction. As it 
can be seen in Figs. 3(a)-3(d), i.e. after background correction of the measured signal, the 
calculated curves fit very well, over 3-4 orders of magnitude of the intensity range, and the fit 
is only limited by the measurement noise at the very low intensities. The corrected 
background has a very small contribution to the signal with c0/c1 in the range of 3000-6000. 
Table 1 summarizes all the used fitting parameters. The data in Table 1 shows that the 
background should originate from the back surface of the crystal, because the focus position 
(z1) is shifted. Such a small contribution cannot be observed from the front surface, because it 
is within the fitting error. 

Table 1. Fitting parameters 

  LiF MgF2 CaF2  H3 CaF2  H5 

crystal 
parameters 

L (mm) 0.5 1 0.2 0.45 0.2 0.45 

n 1.39 1.38 1.43 

fitting 
parameters 

L (µm) 449 970 208 443 190 430 

zR (µm) 146 128 124 137 106 123 

q' 4.6 4.09 4.29 4.67 3.8 3.5 

z1 (µm) 704 1250 432 699   

zR1 (µm) 106 106 98 87   

c0/c1 5700 5700 3800 4900   

 

Because of the weaker signal of the 5th harmonic, see Fig. 3(e), it was not possible to 
perform measurements with a similar dynamic range as in the case of the 3rd harmonic, but it 
is still possible to fit Eq. (3), and no background correction is necessary. We get a good fit 
with q'≈3.6±0.2, which is indeed different from the bulk case (q'=4). The fit was limited only 
by the measurement noise in the case of the front surface or by the added contribution of the 
other surface in the case of the back surface, as it can be seen in Fig. 3(f). We can conclude 
from this analysis that assuming non-perturbative harmonics generated on the crystal surface 
accurately describes the measurements over several orders of magnitude of the intensity 
range. 

5. Z-scan measurement on the GaN layer on sapphire 

In a second measurement series, a GaN layer (a wurtzite crystal structure with thickness of 5 
µm) on a sapphire substrate (thickness of 430 µm) having (0001) orientation was used. In 
these measurements we make use of the fact that GaN is a semiconductor with a bandgap of 
3.4 eV and consequently strongly absorbs both the 3rd and the 5th harmonic of a Ti:sapphire 
laser, while the sapphire substrate is transparent at both harmonic wavelengths [26]. The 
sample was again moved along the optical axis of the laser beam through the focal region (z-
scan) and the intensity of the generated 3rd or 5th harmonic were measured with the VUV 
monochromator. The results are plotted in Fig. 4(a). The measurements were performed when 
the GaN layer was on the back surface (light/dark-blue lines); on the front surface (orange 
line) of the substrate; and also with a sapphire sample without GaN layer (thickness of 500 
µm, black dashed line) for comparison. As it can be seen in Fig. 4(a), the 3rd harmonic 
generated from the GaN layer was up to 2000 times stronger than that from the sapphire 
sample without the GaN layer. It was only possible to generate 5th harmonic from the GaN 
layer (not from the sapphire). The measured spectra from the GaN layer and from a substrate 
without layer are shown in Fig. 4(b). The spectra of the 5th harmonic are also shown 
separately in Fig. 4(c) with linear scale. 
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morphologically different and one can expect a difference in the harmonic generation 
efficiency. The obtained results can therefore be explained as follows: 

- Black dashed line (Substrate H3): when a sapphire sample was used without any GaN 
layer, the 3rd harmonic signal peaked at the two positions where the focus is at the surfaces. 
The harmonic signals from the two surfaces were about the same, as expected, because the 
two surfaces were equivalent. The 5th harmonic was not generated by the sapphire without a 
GaN layer.  

- Light/dark blue lines (Surface H3/H5): when the GaN layer was on the back surface of 
the sapphire substrate, a strong 3rd harmonic signal and a weaker 5th harmonic were clearly 
generated from the back surface of the GaN layer (GaN–vacuum interface). These harmonic 
signals decreased as the laser intensity decreased on the surface, as the focus was moved 
away from the surface. They were generated at the GaN–vacuum interface because the 
harmonic signals generated at the GaN–sapphire interface and at the sapphire-vacuum 
interface (sapphire front surface) were absorbed by the GaN layer.  

- Orange line (Interface H3): the GaN layer was on the front surface. At zero focus 
position (sapphire–vacuum interface) a weak 3rd harmonic signal was generated, the same as 
from the sapphire crystal alone, as it would be expected. At the focus position of 430 µm, 
when the GaN layer was in the focus, a strong 3rd harmonic signal was generated, but about 4-
times weaker than in the case that the layer was on the back surface (light blue curve). This 
harmonic signal did not originate from the front surface of the GaN layer (GaN–vacuum 
interface), because that signal was absorbed by the GaN layer. Furthermore, the harmonic 
signal could not be generated inside the bulk GaN layer, as if this were the case it would have 
shown the same signal strength as in the case where the GaN layer was on the back surface 
(light blue curve). The harmonic signal was hence generated on the GaN–sapphire interface. 
The 5th harmonic signal was too weak to be measured in a z-scan and only the spectrum (at 
the focus position on GaN) was measured [see Fig. 4(c)]. 

6. Conclusion 

In conclusion, we generated intense 3rd harmonic from different fluoride crystals, 5th 
harmonic from CaF2 crystals, and 3rd and 5th harmonics from a crystalline GaN layer on a 
sapphire substrate. We showed experimentally that these harmonics were generated from the 
surfaces or the interfaces between the crystals in a non-perturbative manner. We find no 
contribution from perturbative bulk harmonics in the measured signals, meaning that for the 
3rd harmonic non-perturbative surface contribution should be 4-5 orders of magnitude larger. 

Further studies are needed to examine the high efficiency of the harmonics generated from 
the surface, and few new studies already started to address this question. In [27] it is 
theoretically shown that from topological edge states, harmonics can be 14-orders of 
magnitude more efficiently generated than from bulk, what may be applicable to surfaces. An 
experimental study [28] reports that from the interface between two materials the second 
harmonic can be more efficiently generated. High harmonics on a surface in reflection 
geometry have also been generated [29].  

Based on our findings, suitably nano-engineered surfaces may greatly improve the 
efficiency of non-perturbative harmonic generation [30-33]. Designed multilayer structures 
based on surface harmonics can also improve harmonic generation efficiency by means of 
quasi-phase matching. 
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