14 research outputs found

    The contribution of the scientific research for a less vulnerable and more resilient community: the Val d'Agri (Southern Italy) case

    Get PDF
    The increasingly intensive use of natural resources with consequent environmental impacts has generated numerous social conflicts over the years, for whose solution it is necessary to build up an innovative territorial governance model based on sustainable and resilience thinking. At the international level, the problems associated with oil and gas extraction activities have been tackled by recognizing scientific research as a strategic role aimed at guaranteeing a more in-depth knowledge of environmental issues, the creation of collaboration networks between the various stakeholders and the whole usability of environmental data. This article presents the commitment made by the National Research Council of Italy – Institute of Methodologies for Environmental Analysis – CNR-IMAA to make the Val d'Agri community, an area affected by mining activities, less vulnerable and more resilient. Through the combined use of different scientific research methodologies, a multidisciplinary approach was developed which contributed to increasing the overall knowledge of the environmental problems of Val d'Agri as well as providing concrete indications for the development of more effective territorial management tools. Other activities, complementary to those of research, were aimed at ensuring correct and detailed environmental data information and communication and a broaden participation and involvement of citizens

    OBSERVING MINERAL DUST IN NORTHERN AFRICA, THE MIDDLE EAST AND EUROPE: CURRENT CAPABILITIES AND CHALLENGES AHEAD FOR THE DEVELOPMENT OF DUST SERVICES

    Get PDF
    Mineral dust produced by wind erosion of arid and semi-arid surfaces is a major component of atmospheric aerosol that affects climate, weather, ecosystems, and socio-economic sectors such as human health, transportation, solar energy, and air quality. Understanding these effects and ultimately improving the resilience of affected countries requires a reliable, dense, and diverse set of dust observations, fundamental for the development and the provision of skillful dust forecasts tailored products. The last decade has seen a notable improvement of dust observational capabilities in terms of considered parameters, geographical coverage, and delivery times, as well as of tailored products of interest to both the scientific community and the various end-users. Given this progress, here we review the current state of observational capabilities including in-situ, ground-based and satellite remote sensing observations, in Northern Africa, the Middle East and Europe for the provision of dust information considering the needs of various users. We also critically discuss observational gaps and related unresolved questions while providing suggestions for overcoming the current limitations. Our review aims to be a milestone for discussing dust observational gaps at a global level to address the needs of users, from research communities to nonscientific stakeholdersAuthors acknowledge dr Sangboom Ryoo of Korean Meteorological Administration in Seoul for his help and support.The research leading to these results has received funding from the COST ActionCA16202, supported by COST Association (European Cooperation in Science and Technology), from DustClim Project as part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union (Grant 690462) and by the European Union’s Horizon 2020 research program for societal challenges – smart, green and integrated transport under grant agreement no.723986 (project EUNADICS-AV – European Natural Disaster Coordination and Information System for Aviation). L. Mona acknowledges the ACTRIS-IMP (Implementation project), funded by the European Union’s Horizon 2020 research and innovation programme (Grant no 871115) and the contribution of the ACTRIS-ITALIA JRU (CNR prot. n. 0067310/2017). S. Basart acknowledges CAMS-84 and CAMS2-82 (part of the Copernicus Atmospheric Monitoring Services, CAMS) and the Spanish Jose Castillejo mobility programme (CAS18/0033). V. Amiridis acknowledges support from the European Research Council (grant no. 725698, D-TECT). A. Gkikas acknowledges support by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects to support Post-Doctoral Researchers” (project acronym: ATLANTAS, project number: 544). S. Kazadzis acknowledges the ACTRIS-CH (Aerosol, Clouds and Trace Gases Research Infrastructure–- Swiss contribution) funded by the State Secretariat for Education, Research, and Innovation, Switzerland. Work of P. Dagsson-Waldhauserova was partly funded by the Czech Science Foundation (HLD-CHANGE project, no. 20-06168Y). C. PĂ©rez GarcĂ­a-Pando acknowledges the long-term support from the AXA Research Fund, as well as the support received through the RamĂłn y Cajal programme (grant RYC-2015-18690) of the Spanish Ministry of Economy and Competitiveness, and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 773051).B. Weinzierl acknowledges funding under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 640458, A‐LIFE).Peer Reviewed"Article signat per 26 autors/es: Lucia Mona, Vassilis Amiridis, Emilio Cuevas, Antonis Gkikas, Serena Trippetta, Sophie Vandenbussche, Angela Benedetti, Pavla Dagsson-Waldhauserova, Paola Formenti, Alexander Haefele, Stelios Kazadzis, Peter Knippertz, Benoit Laurent, Fabio Madonna, Slobodan Nickovic, Nikolaos Papagiannopoulos, Gelsomina Pappalardo, Carlos PĂ©rez GarcĂ­a-Pando, Thomas Popp, Sergio RodrĂ­guez, Andrea Sealy, Nobuo Sugimoto, Enric Terradellas, Ana Vukovic Vimic, Bernadette Weinzierl, and Sara Basart "Postprint (author's final draft

    Observing mineral dust in northern Africa, the middle east and Europe: current capabilities and challenges ahead for the development of dust services

    Get PDF
    Mineral dust produced by wind erosion of arid and semi-arid surfaces is a major component of atmospheric aerosol that affects climate, weather, ecosystems, and socio-economic sectors such as human health, transportation, solar energy, and air quality. Understanding these effects and ultimately improving the resilience of affected countries requires a reliable, dense, and diverse set of dust observations, fundamental for the development and the provision of skillful dust forecasts tailored products. The last decade has seen a notable improvement of dust observational capabilities in terms of considered parameters, geographical coverage, and delivery times, as well as of tailored products of interest to both the scientific community and the various end-users. Given this progress, here we review the current state of observational capabilities including in-situ, ground-based and satellite remote sensing observations, in Northern Africa, the Middle East and Europe for the provision of dust information considering the needs of various users. We also critically discuss observational gaps and related unresolved questions while providing suggestions for overcoming the current limitations. Our review aims to be a milestone for discussing dust observational gaps at a global level to address the needs of users, from research communities to nonscientific stakeholders

    Multi-sectoral Impact Assessment of an Extreme African Dust Episode in the Eastern Mediterranean in March 2018

    Get PDF
    In late March 2018, a large part of the Eastern Mediterranean experienced an extraordinary episode of African dust, one of the most intense in recent years, here referred to as the “Minoan Red” event. The episode mainly affected the Greek island of Crete, where the highest aerosol concentrations over the past 15 yeas were recorded, although impacts were also felt well beyond this core area. Our study fills a gap in dust research by assessing the multi-sectoral impacts of sand and dust storms and their socioeconomic implications. Specifically, we provide a multi-sectoral impact assessment of Crete during the occurrence of this exceptional African dust event. During the day of the occurrence of the maximum dust concentration in Crete, i.e. March 22nd, 2018, we identified impacts on meteorological conditions, agriculture, transport, energy, society (including closing of schools and cancellation of social events), and emergency response systems. As a result, the event led to a 3-fold increase in daily emergency responses compare to previous days associated with urban emergencies and wildfires, a 3.5-fold increase in hospital visits and admissions for Chronic Obstructive Pulmonary Disease (COPD) exacerbations and dyspnoea, a reduction of visibility causing aircraft traffic disruptions (eleven cancellations and seven delays), and a reduction of solar energy production. We estimate the cost of direct and indirect effects of the dust episode, considering the most affected socio-economic sectors (e.g. civil protection, aviation, health and solar energy production), to be between 3.4 and 3.8 million EUR for Crete. Since such desert dust transport episodes are natural, meteorology-driven and thus to a large extent unavoidable, we argue that the efficiency of actions to mitigate dust impacts depends on the accuracy of operational dust forecasting and the implementation of relevant early warning systems for social awareness

    Multi-sectoral impact assessment of an extreme African dust episode in the Eastern Mediterranean in March 2018

    Get PDF
    In late March 2018, a large part of the Eastern Mediterranean experienced an extraordinary episode of African dust, one of the most intense in recent years, here referred to as the “Minoan Red” event. The episode mainly affected the Greek island of Crete, where the highest aerosol concentrations over the past 15 yeas were recorded, although impacts were also felt well beyond this core area. Our study fills a gap in dust research by assessing the multi-sectoral impacts of sand and dust storms and their socioeconomic implications. Specifically, we provide a multi-sectoral impact assessment of Crete during the occurrence of this exceptional African dust event. During the day of the occurrence of the maximum dust concentration in Crete, i.e. March 22nd, 2018, we identified impacts on meteorological conditions, agriculture, transport, energy, society (including closing of schools and cancellation of social events), and emergency response systems. As a result, the event led to a 3-fold increase in daily emergency responses compare to previous days associated with urban emergencies and wildfires, a 3.5-fold increase in hospital visits and admissions for Chronic Obstructive Pulmonary Disease (COPD) exacerbations and dyspnoea, a reduction of visibility causing aircraft traffic disruptions (eleven cancellations and seven delays), and a reduction of solar energy production. We estimate the cost of direct and indirect effects of the dust episode, considering the most affected socio-economic sectors (e.g. civil protection, aviation, health and solar energy production), to be between 3.4 and 3.8 million EUR for Crete. Since such desert dust transport episodes are natural, meteorology-driven and thus to a large extent unavoidable, we argue that the efficiency of actions to mitigate dust impacts depends on the accuracy of operational dust forecasting and the implementation of relevant early warning systems for social awareness.Thanks are due to FCT/MCTES for the financial support to CESAM (UIDP/50017/2020+UIDB/50017/2020) through national funds, and also to the Icelandic Research Fund for the grant no. 207057-051. Authors S. Kazadzis and P. Kosmopoulos would like to acknowledge the European Commission project EuroGEO e-shape (grant agreement No 820852). Also, International Cooperative for Aerosol Prediction (ICAP) and NASA mission researchers are gratefully for providing aerosol data for this study. Aurelio Tobias was supported by MCIN/AEI/10.13039/501100011033 (grant CEX2018-000794-S). S. Kutuzov acknowledges the Megagrant project (agreement No. 075-15-2021-599, 8.06.2021)

    Validation of Ash/Dust Detections from SEVIRI Data Using ACTRIS/EARLINET Ground-Based LIDAR Measurements

    No full text
    Two tailored configurations of the Robust Satellite Technique (RST) multi-temporal approach, for airborne volcanic ash and desert dust detection, have been tested in the framework of the European Natural Airborne Disaster Information and Coordination System for Aviation (EUNADICS-AV) project. The two algorithms, running on Spinning Enhanced Visible Infra-Red Imager (SEVIRI) data, were previously assessed over wide areas by comparison with independent satellite-based aerosol products. In this study, we present results of a first validation analysis of the above mentioned satellite-based ash/dust products using independent, ground-based observations coming from the European Aerosol Research Lidar Network (EARLINET). The aim is to assess the capabilities of RST-based ash/dust products in providing useful information even at local scale and to verify their applicability as a “trigger” to timely activate EARLINET measurements during airborne hazards. The intense Saharan dust event of May 18–23 2008—which affected both the Mediterranean Basin and Continental Europe—and the strong explosive eruptions of Eyjafjallajökull (Iceland) volcano of April–May 2010, were analyzed as test cases. Our results show that both RST-based algorithms were capable of providing reliable information about the investigated phenomena at specific sites of interest, successfully detecting airborne ash/dust in different geographic regions using both nighttime and daytime SEVIRI data. However, the validation analysis also demonstrates that ash/dust layers remain undetected by satellite in the presence of overlying meteorological clouds and when they are tenuous (i.e., with an integrated backscatter coefficient less than ~0.001 sr−1 and with aerosol backscatter coefficient less than ~1 × 10−6 m−1sr−1). This preliminary analysis confirms that the continuity of satellite-based observations can be used to timely “trigger” ground-based LIDAR measurements in case of airborne hazard events. Finally, this work confirms that advanced satellite-based detection schemes may provide a relevant contribution to the monitoring of ash/dust phenomena and that the synergistic use of (satellite-based) large scale, continuous and timely records with (ground-based) accurate and quantitative measurements may represent an added value, especially in operational scenarios

    Comparison of dust optical depth from multi-sensor products and MONARCH (Multiscale Online Non-hydrostatic AtmospheRe CHemistry) dust reanalysis over North Africa, the Middle East, and Europe

    No full text
    International audienceAerosol reanalysis datasets are model-based, observationally constrained, continuous 3D aerosol fields with a relatively high temporal frequency that can be used to assess aerosol variations and trends, climate effects, and impacts on socioeconomic sectors, such as health. Here we compare and assess the recently published MONARCH (Multiscale Online Non-hydrostatic AtmospheRe CHemistry) high-resolution regional desert dust reanalysis over northern Africa, the Middle East, and Europe (NAMEE) with a combination of ground-based observations and space-based dust retrievals and products. In particular, we compare the total and coarse dust optical depth (DOD) from the new reanalysis with DOD products derived from MODIS (MODerate resolution Imaging Spectroradiometer), MISR (Multi-angle Imaging SpectroRadiometer), and IASI (Infrared Atmospheric Sounding Interferometer) spaceborne instruments. Despite the larger uncertainties, satellite-based datasets provide a better geographical coverage than ground-based observations, and the use of different retrievals and products allows at least partially overcoming some single-product weaknesses in the comparison. Nevertheless, limitations and uncertainties due to the type of sensor, its operating principle, its sensitivity, its temporal and spatial resolution, and the methodology for retrieving or further deriving dust products are factors that bias the reanalysis assessment. We, therefore, also use ground-based DOD observations provided by 238 stations of the AERONET (AErosol RObotic NETwork) located within the NAMEE region as a reference evaluation dataset. In particular, prior to the reanalysis assessment, the satellite datasets were evaluated against AERONET, showing moderate underestimations in the vicinities of dust sources and downwind regions, whereas small or significant overestimations, depending on the dataset, can be found in the remote regions. Taking these results into consideration, the MONARCH reanalysis assessment shows that total and coarse-DOD simulations are consistent with satellite-and ground-based data, qualitatively capturing the major dust sources in the area Published by Copernicus Publications on behalf of the European Geosciences Union
    corecore